A long short-term memory embedding for hybrid uplifted reduced order models

[1]  Omer San,et al.  Breaking the Kolmogorov Barrier in Model Reduction of Fluid Flows , 2020 .

[2]  Prasanna Balaprakash,et al.  Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders , 2020, Physics of Fluids.

[3]  Omer San,et al.  Digital Twin: Values, Challenges and Enablers From a Modeling Perspective , 2019, IEEE Access.

[4]  Sebastian Grimberg,et al.  On the stability of projection-based model order reduction for convection-dominated laminar and turbulent flows , 2020, J. Comput. Phys..

[5]  Eyad H. Abed,et al.  Local modal participation analysis of nonlinear systems using Poincaré linearization , 2019, Nonlinear Dynamics.

[6]  Shady E. Ahmed,et al.  Data-driven recovery of hidden physics in reduced order modeling of fluid flows , 2019, Physics of Fluids.

[7]  S. M. Rahman,et al.  Memory embedded non-intrusive reduced order modeling of non-ergodic flows , 2019, Physics of Fluids.

[8]  Traian Iliescu,et al.  An Evolve-Filter-Relax Stabilized Reduced Order Stochastic Collocation Method for the Time-Dependent Navier-Stokes Equations , 2019, SIAM/ASA J. Uncertain. Quantification.

[9]  Traian Iliescu,et al.  A non-intrusive reduced order modeling framework for quasi-geostrophic turbulence , 2019, Physical review. E.

[10]  Petros Koumoutsakos,et al.  Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.

[11]  Karthik Duraisamy,et al.  Modal Analysis of Fluid Flows: Applications and Outlook , 2019, AIAA Journal.

[12]  Omer San,et al.  A dynamic closure modeling framework for model order reduction of geophysical flows , 2019, Physics of Fluids.

[13]  R. Zimmermann,et al.  Manifold interpolation and model reduction , 2019, 1902.06502.

[14]  Ionel M. Navon,et al.  Machine learning-based rapid response tools for regional air pollution modelling , 2019, Atmospheric Environment.

[15]  Christopher C. Pain,et al.  Optimal reduced space for Variational Data Assimilation , 2019, J. Comput. Phys..

[16]  Benjamin Peherstorfer,et al.  Projection-based model reduction: Formulations for physics-based machine learning , 2019, Computers & Fluids.

[17]  Mehdi Ghommem,et al.  pyROM: A computational framework for reduced order modeling , 2019, J. Comput. Sci..

[18]  C. Allery,et al.  Non intrusive method for parametric model order reduction using a bi-calibrated interpolation on the Grassmann manifold , 2018, J. Comput. Phys..

[19]  Kookjin Lee,et al.  Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders , 2018, J. Comput. Phys..

[20]  Ahmed H. Elsheikh,et al.  Reduced-Order Modeling of Subsurface Multi-phase Flow Models Using Deep Residual Recurrent Neural Networks , 2018, Transport in Porous Media.

[21]  C. Allery,et al.  A fast and robust sub-optimal control approach using reduced order model adaptation techniques , 2018, Appl. Math. Comput..

[22]  Michael Dellnitz,et al.  Multiobjective Optimal Control Methods for the Navier-Stokes Equations Using Reduced Order Modeling , 2018, Acta Applicandae Mathematicae.

[23]  Karen Willcox,et al.  Nonlinear Model Order Reduction via Lifting Transformations and Proper Orthogonal Decomposition , 2018, AIAA Journal.

[24]  Annalisa Quaini,et al.  A localized reduced-order modeling approach for PDEs with bifurcating solutions , 2018, Computer Methods in Applied Mechanics and Engineering.

[25]  M. Mohebujjaman,et al.  Physically constrained data‐driven correction for reduced‐order modeling of fluid flows , 2018, International Journal for Numerical Methods in Fluids.

[26]  A. Mohan,et al.  A Deep Learning based Approach to Reduced Order Modeling for Turbulent Flow Control using LSTM Neural Networks , 2018, 1804.09269.

[27]  Karthik Duraisamy,et al.  Turbulence Modeling in the Age of Data , 2018, Annual Review of Fluid Mechanics.

[28]  Petros Koumoutsakos,et al.  Data-assisted reduced-order modeling of extreme events in complex dynamical systems , 2018, PloS one.

[29]  Michelle Girvan,et al.  Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction with a Knowledge-Based Model , 2018, Chaos.

[30]  Nils Thürey,et al.  Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow , 2018, Comput. Graph. Forum.

[31]  Igor Melnyk,et al.  Deep learning algorithm for data-driven simulation of noisy dynamical system , 2018, J. Comput. Phys..

[32]  Petros Koumoutsakos,et al.  Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Benjamin Peherstorfer,et al.  Geometric Subspace Updates with Applications to Online Adaptive Nonlinear Model Reduction , 2018, SIAM J. Matrix Anal. Appl..

[34]  C. Pain,et al.  Model identification of reduced order fluid dynamics systems using deep learning , 2017, International Journal for Numerical Methods in Fluids.

[35]  P. Durbin Some Recent Developments in Turbulence Closure Modeling , 2018 .

[36]  S. Brunton,et al.  Deep learning for universal linear embeddings of nonlinear dynamics , 2017, Nature Communications.

[37]  Nirmal J. Nair,et al.  Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks , 2017, International Journal for Numerical Methods in Engineering.

[38]  Clarence W. Rowley,et al.  Linearly-Recurrent Autoencoder Networks for Learning Dynamics , 2017, SIAM J. Appl. Dyn. Syst..

[39]  Milan Korda,et al.  Data-driven spectral analysis of the Koopman operator , 2017, Applied and Computational Harmonic Analysis.

[40]  Karen Willcox,et al.  Engineering Design with Digital Thread , 2017, AIAA Journal.

[41]  Traian Iliescu,et al.  Data-Driven Filtered Reduced Order Modeling of Fluid Flows , 2017, SIAM J. Sci. Comput..

[42]  Youngsoo Choi,et al.  Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction , 2017, SIAM J. Sci. Comput..

[43]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[44]  J. Nathan Kutz,et al.  Deep learning in fluid dynamics , 2017, Journal of Fluid Mechanics.

[45]  John Cristian Borges Gamboa,et al.  Deep Learning for Time-Series Analysis , 2017, ArXiv.

[46]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[47]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[48]  René Milk,et al.  pyMOR - Generic Algorithms and Interfaces for Model Order Reduction , 2015, SIAM J. Sci. Comput..

[49]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[50]  Harbir Antil,et al.  Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction , 2015, J. Comput. Phys..

[51]  Bernard Haasdonk,et al.  Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems , 2015, Comput. Optim. Appl..

[52]  B. R. Noack,et al.  Optimal nonlinear eddy viscosity in Galerkin models of turbulent flows , 2014, Journal of Fluid Mechanics.

[53]  Adrian Sandu,et al.  Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations , 2014, International Journal for Numerical Methods in Fluids.

[54]  Traian Iliescu,et al.  A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation , 2014, Adv. Comput. Math..

[55]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[56]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[57]  Bernd R. Noack,et al.  Cluster-based reduced-order modelling of a mixing layer , 2013, Journal of Fluid Mechanics.

[58]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for fluid flows: Burgers equation , 2013, 1308.3276.

[59]  Bernd R. Noack,et al.  Identification strategies for model-based control , 2013 .

[60]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[61]  Earl H. Dowell,et al.  Stabilization of projection-based reduced order models of the Navier–Stokes , 2012 .

[62]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[63]  Traian Iliescu,et al.  A New Closure Strategy for Proper Orthogonal Decomposition Reduced-Order Models , 2012 .

[64]  JAKE BOUVRIE,et al.  Kernel Methods for the Approximation of Nonlinear Systems , 2011, SIAM J. Control. Optim..

[65]  Bernard Haasdonk,et al.  A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .

[66]  Sirod Sirisup,et al.  On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation , 2011 .

[67]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[68]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[69]  Matthew F. Barone,et al.  On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far‐field boundary treatment , 2010 .

[70]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[71]  Charbel Farhat,et al.  A method for interpolating on manifolds structural dynamics reduced‐order models , 2009 .

[72]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[73]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[74]  Virginia Kalb,et al.  An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models , 2007 .

[75]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[76]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[77]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[78]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[79]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[80]  P. Beran,et al.  Reduced-order modeling: new approaches for computational physics , 2004 .

[81]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[82]  Pierre Sagaut,et al.  Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow , 2003, Journal of Fluid Mechanics.

[83]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[84]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[85]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[86]  Jürgen Schmidhuber,et al.  Learning to Forget: Continual Prediction with LSTM , 2000, Neural Computation.

[87]  James C. McWilliams,et al.  Vortex merging in quasi-geostrophic flows , 2000, Journal of Fluid Mechanics.

[88]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[89]  Jean-Antoine Désidéri,et al.  Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .

[90]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[91]  A. Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[92]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[93]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[94]  D. I. Pullin,et al.  Merger and cancellation of strained vortices , 1989, Journal of Fluid Mechanics.

[95]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[96]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[97]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[98]  Dirk Hartmann,et al.  Model Order Reduction a Key Technology for Digital Twins , 2018 .

[99]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[100]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[101]  Andrew W. Senior,et al.  Long short-term memory recurrent neural network architectures for large scale acoustic modeling , 2014, INTERSPEECH.

[102]  Ionel M. Navon,et al.  Non-Linear Petrov-Galerkin Methods for Reduced Order Modelling of the Nav ‐ ier-Stokes Equations using a Mixed Finite Element , 2012 .

[103]  Bernard Haasdonk,et al.  Model reduction of parametrized evolution problems using the reduced basis method with adaptive time partitioning , 2011 .

[104]  Pavel B. Bochev,et al.  LEAST SQUARES FINITE ELEMENT METHODS FOR VISCOUS , INCOMPRESSIBLE FLOWS , 2006 .

[105]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[106]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[107]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[108]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[109]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[110]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .