First-principles study of elastic properties of CeO2, ThO2 and PoO2

Using first-principles density functional calculations, the structural and elastic properties of fluorite type oxides CeO2, ThO2 and PoO2 were studied by means of the full-potential linear muffin-tin orbital method. Calculations were performed within the local density approximation (LDA) as well as generalized gradient approximation (GGA) to the exchange correlation potential. The calculated equilibrium lattice constants and bulk moduli are in good agreement with the experimental results, as are the computed elastic constants for CeO2 and ThO2. For PoO2 this is the first quantitative theoretical prediction of the ground state properties, and it still awaits experimental confirmation. The calculations find PoO2 to be a semiconductor with an indirect band gap and elastic constants similar in magnitude to those of CeO2 and ThO2.

[1]  R. Eryigit,et al.  Ab initio pressure-dependent vibrational and dielectric properties of CeO 2 , 2006 .

[2]  B. Johansson,et al.  Optimization of ionic conductivity in doped ceria. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Y. Yamamura,et al.  Thermal expansion and Debye temperature of rare earth-doped ceria , 2006 .

[4]  L. Gerward,et al.  Bulk modulus of CeO2 and PrO2—An experimental and theoretical study , 2005 .

[5]  Z. Szotek,et al.  First principles study of rare-earth oxides , 2005, cond-mat/0503667.

[6]  Stefano de Gironcoli,et al.  Taming multiple valency with density functionals: A case study of defective ceria , 2005 .

[7]  L. Gerward,et al.  The bulk modulus of ThO2—an experimental and theoretical study , 2004 .

[8]  T. L. Bihan,et al.  Behaviour of Actinide Dioxides under Pressure: UO2 and ThO2 , 2004 .

[9]  R. Delaunay,et al.  Resonant X-ray emission spectroscopy applied to a mixed-valent system , 2004 .

[10]  K. Hermansson,et al.  Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. , 2004, The Journal of chemical physics.

[11]  T. Golden,et al.  Anodic Electrodeposition of Cerium Oxide Thin Films I. Formation of Crystalline Thin Films , 2003 .

[12]  R. Orlando,et al.  Structural, electronic and elastic properties of some fluoride crystals: an ab initio study , 2003 .

[13]  B. Lundqvist,et al.  Quantum origin of the oxygen storage capability of ceria. , 2002, Physical review letters.

[14]  A. Delin,et al.  Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems ß-HgS, HgSe, and HgTe , 2002 .

[15]  R. Ahuja,et al.  High Pressure Theoretical Studies of Actinide Dioxides , 2002 .

[16]  Börje Johansson,et al.  Electronic, bonding, and optical properties of CeO 2 and Ce 2 O 3 from first principles , 2001 .

[17]  E. Mamontov,et al.  X-ray absorption and inelastic scattering studies of single-crystal CeO2 , 2001 .

[18]  C. Catlow,et al.  Comparison of the bulk and surface properties of ceria and zirconia by ab initio investigations , 1999 .

[19]  O. Eriksson,et al.  Spin-orbit coupling in the actinide elements : A critical evaluation of theoretical equilibrium volumes , 1999, cond-mat/9908344.

[20]  Anna Delin,et al.  COHESIVE PROPERTIES OF THE LANTHANIDES : EFFECT OF GENERALIZED GRADIENT CORRECTIONS AND CRYSTAL STRUCTURE , 1998 .

[21]  S. Dudarev,et al.  Electronic Structure and Elastic Properties of Strongly Correlated Metal Oxides from First Principles: LSDA + U, SIC‐LSDA and EELS Study of UO2 and NiO , 1998 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Savrasov,et al.  Linear-response theory and lattice dynamics: A muffin-tin-orbital approach. , 1996, Physical review. B, Condensed matter.

[24]  Nakajima,et al.  Defect-induced Raman spectra in doped CeO2. , 1994, Physical review. B, Condensed matter.

[25]  Liu,et al.  Elastic instability of bcc cobalt. , 1993, Physical review. B, Condensed matter.

[26]  Jayaraman,et al.  High-pressure x-ray diffraction study of CeO2 to 70 GPa and pressure-induced phase transformation from the fluorite structure. , 1988, Physical review. B, Condensed matter.

[27]  Jayaraman,et al.  High-pressure Raman study of CeO2 to 35 GPa and pressure-induced phase transformation from the fluorite structure. , 1988, Physical review. B, Condensed matter.

[28]  L. G. Uitert,et al.  A high pressure raman study of ThO2 to 40 GPa and pressure-induced phase transition from fluorite structure , 1988 .

[29]  Caro,et al.  X-ray absorption studies of CeO2, PrO2, and TbO2. II. Rare-earth valence state by LIII absorption edges. , 1987, Physical review. B, Condensed matter.

[30]  Caro,et al.  X-ray absorption studies of CeO2, PrO2, and TbO2. I. Manifestation of localized and extended f states in the 3d absorption spectra. , 1987, Physical review. B, Condensed matter.

[31]  Pierre Villars,et al.  Pearson's handbook of crystallographic data for intermetallic phases , 1985 .

[32]  M. Yanagihara,et al.  On the valence states of cerium in CeO2 , 1985 .

[33]  B. Delley,et al.  Spectroscopic Evidence for Localized and Extended F-Symmetry States in Ceo2 , 1984 .

[34]  N. Christensen “Force theorem” and elastic constants of solids , 1984 .

[35]  A. Fujimori Mixed-valent ground state of Ce O 2 , 1983 .

[36]  D. Koelling,et al.  The electronic structure of CeO2 and PrO2 , 1983 .

[37]  M. Dacorogna,et al.  Erratum:Ab initiocalculation of the tetragonal shear moduli of the cubic transition metals , 1982 .

[38]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[39]  Lin‐gun Liu High-pressure phase transformations of fluorite-type dioxides , 1980 .

[40]  G. White,et al.  The thermal expansion at low temperatures of UO2 and UO2/ThO2 , 1974 .

[41]  R. Linares Growth and properties of ceo2 and tho2 single crystals , 1967 .

[42]  W. Capps,et al.  Elastic Constants of Single Crystal Tho2 at 25°C , 1964 .

[43]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[44]  F. Birch The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain , 1938 .

[45]  Hideaki Inaba,et al.  Ceria-based solid electrolytes , 1996 .

[46]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[47]  W. F. Riley Book Reviews : ELASTIC CONSTANTS AND THEIR MEASUREMENT E. Schreiber, O. L. Anderson, and N. Soga McGraw-Hill Book Co., New York, N. Y. (1973) , 1975 .

[48]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[49]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[50]  L. Eyring FLUORITE-RELATED OXIDE PHASES OF THE RARE EARTH AND ACTINIDE ELEMENTS. , 1967 .