Localization and Entanglement in Relativistic Quantum Physics
暂无分享,去创建一个
[1] M. Planck,et al. Vorträge und Erinnerungen , 1970 .
[2] Representations of uniformly hyperfinite algebras and their associated von Neumannn rings , 1967 .
[3] Classification of Two-Dimensional Local Conformal Nets with c < 1 and 2-Cohomology Vanishing for Tensor Categories , 2003, math-ph/0304022.
[4] J. Fröhlich,et al. Infrared problem and spontaneous breaking of the Lorentz group in QED , 1979 .
[5] Rudolf Haag,et al. Fields, observables and gauge transformations I , 1969 .
[6] M. Takesaki,et al. Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.
[7] Roberto Longo,et al. On Noether's Theorem in Quantum Field Theory , 1986 .
[8] P. Porcelli,et al. On rings of operators , 1967 .
[9] Hans Halvorson,et al. Entanglement and Open Systems in Algebraic Quantum Field Theory , 2001 .
[10] K. Fredenhagen. A remark on the cluster theorem , 1985 .
[11] Reinhard F. Werner,et al. On Bell's inequalities and algebraic invariants , 1995 .
[12] Deformations of Fermionic Quantum Field Theories and Integrable Models , 2012, 1203.2058.
[13] J. Yngvason. Zero-mass infinite spin representations of the Poincaré group and quantum field theory , 1970 .
[14] J. Perez,et al. Localization and causality in relativistic quantum mechanics , 1977 .
[15] String-localized quantum fields from Wigner representations , 2004, math-ph/0402043.
[16] J. von Neumann,et al. On rings of operators. II , 1937 .
[17] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[18] John E. Roberts,et al. Local observables and particle statistics I , 1971 .
[19] R. Shaw,et al. Unitary representations of the inhomogeneous Lorentz group , 1964 .
[20] J. Schwartz. Free Quantized Lorentzian Fields , 1961 .
[21] H. Grosse,et al. Wedge-Local Quantum Fields and Noncommutative Minkowski Space , 2007, 0706.3992.
[22] B. Schubnel,et al. Quantum Probability Theory and the Foundations of Quantum Mechanics , 2013, 1310.1484.
[23] Romeo Brunetti,et al. Perturbative Algebraic Quantum Field Theory and the Renormalization Groups , 2009, 0901.2038.
[24] M. Rieffel,et al. A BOUNDED OPERATOR APPROACH TO TOMITA-TAKESAKI THEORY , 1977 .
[25] The quest for understanding in relativistic quantum physics , 1999, hep-th/9910243.
[26] G. C. Hegerfeldt,et al. Causality problems for Fermi's two-atom system. , 1994, Physical review letters.
[27] P. Blanchard,et al. DECOHERENCE INDUCED TRANSITION FROM QUANTUM TO CLASSICAL DYNAMICS , 2003 .
[28] J. Yngvason,et al. Massless, string localized quantum fields for any helicity , 2011, 1111.5164.
[29] J. Mund. String-Localized Quantum Fields, Modular Localization, and Gauge Theories , 2009 .
[30] D. Buchholz,et al. New Light on Infrared Problems: Sectors, Statistics, Symmetries and Spectrum , 2013, 1304.2794.
[31] Romeo Brunetti,et al. Algebraic approach to Quantum Field Theory , 2004 .
[32] Detlev Buchholz,et al. Locality and the structure of particle states , 1982 .
[33] A. Wightman,et al. PCT, spin and statistics, and all that , 1964 .
[34] D. Buchholz,et al. Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories , 2010, 1005.2656.
[35] J. Neumann,et al. On Rings of Operators. III , 1940 .
[36] H. Borchers. Half-Sided Translations and tye Type of von Neumann Algebras , 1998 .
[37] Modular localization and wigner particles , 2002, math-ph/0203021.
[38] J. Glimm,et al. Quantum Physics: A Functional Integral Point of View , 1981 .
[39] Roberto Longo,et al. Nuclear maps and modular structures II: Applications to quantum field theory , 1990 .
[40] H. Reeh,et al. Bemerkungen zur unitäräquivalenz von lorentzinvarianten feldern , 1961 .
[41] Daniel R. Terno,et al. Quantum Information and Relativity Theory , 2002, quant-ph/0212023.
[42] H. Biritz,et al. On localized states for elementary systems , 1971 .
[43] Detlev Buchholz,et al. Scaling algebras and renormalization group in algebraic quantum field theory , 1995 .
[44] J. Barata,et al. The ${\mathscr P}(\varphi)_2$ Model on the de Sitter Space , 2013, 1311.2905.
[45] R. Werner. Local preparability of states and the split property in quantum field theory , 1987 .
[46] 米谷 民明,et al. J. Glimm and A. Jaffe: Quantum Physics; A Functional Integral Point of View, Springer-Verlag, New York and Heidelberg, 1981, xx+418ページ, 24.5×16.5cm, DM62. , 1983 .
[47] A. Wightman,et al. FIELDS AS OPERATOR-VALUED DISTRIBUTIONS IN RELATIVISTIC QUANTUM THEORY , 1965 .
[48] E. Wichmann,et al. On the connection between quantum fields and von Neumann algebras of local operators , 1986 .
[49] U. Haagerup. Conne’s bicentralizer problem and uniqueness of the injective factor of type III1 , 1987 .
[50] 竹崎 正道. Tomita's theory of modular Hilbert algebras and its applications , 1970 .
[51] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[52] F. Murray. On Rings of Operators , 1936 .
[53] E. Wichmann,et al. ON THE DUALITY CONDITION FOR QUANTUM FIELDS , 1976 .
[54] K. Fredenhagen. On the modular structure of local algebras of observables , 1985 .
[55] Eyvind H. Wichmann,et al. On the duality condition for a Hermitian scalar field , 1975 .
[56] D. Malament. In Defense of Dogma: Why There Cannot be a Relativistic Quantum Mechanics of (Localizable) Particles , 1996 .
[57] John E. Roberts,et al. Fields, observables and gauge transformations II , 1969 .
[58] QUANTUM FIELD THEORIES , 2004, hep-th/0412158.
[59] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[60] Roberto Longo,et al. Standard and split inclusions of von Neumann algebras , 1984 .
[61] Barry Simon,et al. Methods of modern mathematical physics. III. Scattering theory , 1979 .
[62] Rudolf Haag,et al. On the equilibrium states in quantum statistical mechanics , 1967 .
[63] Stephen J. Summers. Tomita-Takesaki Modular Theory , 2005 .
[64] H. Borchers. Local rings and the connection of spin with statistics , 1965 .
[65] S. J. Summers. On the Independence of Local Algebras in Quantum Field Theory , 1990 .
[66] G. Lechner. Deformations of Quantum Field Theories and Integrable Models , 2011, 1104.1948.
[67] E. J. Woods,et al. REPRESENTATIONS OF THE CANONICAL COMMUTATION RELATIONS DESCRIBING A NONRELATIVISTIC INFINITE FREE BOSE GAS , 1963 .
[68] R. Jost. General Theory of Quantized Fields , 1965 .
[69] Eyvind H. Wichmann,et al. Causal independence and the energy-level density of states in local quantum field theory , 1986 .
[70] H. Araki. Von Neumann Algebras of Local Observables for Free Scalar Field , 1964 .
[71] John E. Roberts,et al. Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics , 1990 .
[72] D. Buchholz. Gauss' law and the infraparticle problem , 1986 .
[73] R. Haag,et al. Local quantum physics , 1992 .
[74] H. Araki. A Lattice of Von Neumann Algebras Associated with the Quantum Theory of a Free Bose Field , 1963 .
[75] A. Connes. Une classification des facteurs de type ${\rm III}$ , 1973 .
[76] Č. Brukner,et al. Entanglement between smeared field operators in the Klein-Gordon vacuum , 2010, 1003.3354.
[77] E. J. Woods,et al. A Classification of Factors , 1968 .
[78] R. Longo. Notes on algebraic invariants for non-commutative dynamical systems , 1979 .
[79] A. Einstein. On the Quantum Theory of Radiation , 1983 .
[80] R. Haag. Quantum field theories with composite particles and asymptotic conditions , 1958 .
[81] D. Buchholz. Product states for local algebras , 1974 .
[82] H. Araki. Type of von Neumann Algebra Associated with Free Field , 1964 .
[83] H. Narnhofer. The role of transposition and CPT operation for entanglement , 2003 .
[84] J. Yngvason,et al. Generalized nuclearity conditions and the split property in quantum field theory , 1991 .
[85] String-Localized Quantum Fields and Modular Localization , 2005, math-ph/0511042.
[86] D. Buchholz,et al. The universal structure of local algebras , 1987 .
[87] O. Bratteli. Operator Algebras And Quantum Statistical Mechanics , 1979 .
[88] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[89] Erwin Schrödinger International,et al. On revolutionizing quantum field theory with Tomita’s modular theory , 2000 .
[90] A. Connes. Une classi cation des facteurs de type III , 1973 .
[91] Huzihiro Araki,et al. Mathematical theory of quantum fields , 1999 .
[92] Rudolf Haag,et al. Local observables and particle statistics II , 1971 .
[93] Anatolii A. Logunov,et al. General Principles of Quantum Field Theory , 1990 .
[94] R. Powers. Representations of Uniformly Hyperfinite Algebras and Their Associated von Neumann Rings , 1967 .