Regression analysis of informative current status data with the additive hazards model

This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

[1]  Jianguo Sun,et al.  The Statistical Analysis of Interval-censored Failure Time Data , 2006 .

[2]  R. Nelsen An Introduction to Copulas , 1998 .

[3]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[4]  Torben Martinussen,et al.  Efficient estimation in additive hazards regression with current status data , 2002 .

[5]  Andrew C Titman,et al.  A pool-adjacent-violators type algorithm for non-parametric estimation of current status data with dependent censoring , 2013, Lifetime Data Analysis.

[6]  Jianguo Sun,et al.  Regression analysis of clustered interval-censored failure time data with the additive hazards model , 2012, Journal of nonparametric statistics.

[7]  John P. Klein,et al.  Estimates of marginal survival for dependent competing risks based on an assumed copula , 1995 .

[8]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[9]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[10]  Do-Hwan Park,et al.  THE ADDITIVE HAZARDS MODEL FOR RECURRENT GAP TIMES , 2006 .

[11]  Xian Zhou,et al.  Addititive hazards regression with missing censoring information , 2003 .

[12]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[13]  W. Wong,et al.  Convergence Rate of Sieve Estimates , 1994 .

[14]  Xiaotong Shen,et al.  On methods of sieves and penalization , 1997 .

[15]  Ding-Geng Chen,et al.  Interval-Censored Time-to-Event Data: Methods and Applications (Chapman & Hall/CRC Biostatistics Series) , 2012 .

[16]  Tao Hu,et al.  Efficient estimation for additive hazards regression with bivariate current status data , 2012 .

[17]  R. Wolfe,et al.  A Frailty Model for Informative Censoring , 2002, Biometrics.

[18]  D. Pollard Convergence of stochastic processes , 1984 .

[19]  Xingwei Tong,et al.  A frailty model approach for regression analysis of multivariate current status data , 2009, Statistics in medicine.

[20]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[21]  Michal Kulich,et al.  Additive Hazards Regression with Covariate Measurement Error , 2000 .

[22]  Jianguo Sun,et al.  A Multiple Imputation Approach to the Analysis of Current Status Data with the Additive Hazards Model , 2009 .

[23]  G. Shorack Probability for Statisticians , 2000 .

[24]  G. Siegel,et al.  Convergence of stochastic processes with random parameters , 1986 .

[25]  Grace Wahba [Monotone Regression Splines in Action]: Comment , 1988 .

[26]  Jian Huang,et al.  Estimation of the mean function with panel count data using monotone polynomial splines , 2007 .

[27]  Zhiliang Ying,et al.  Additive hazards regression with current status data , 1998 .

[28]  T. Louis,et al.  Use of Tumour Lethality to Interpret Tumorigenicity Experiments Lacking Cause‐Of‐Death Data , 1988 .

[29]  Niels Keiding,et al.  Age‐Specific Incidence and Prevalence: A Statistical Perspective , 1991 .

[30]  Jie Zhou,et al.  Nonparametric estimation of current status data with dependent censoring , 2012, Lifetime Data Analysis.

[31]  C. Klaassen,et al.  Discussion to "Inference for semiparametric models: some questions and an answer" by Peter J. Bickel and Jaimyoung Kwon , 2001 .

[32]  Chyong-Mei Chen,et al.  Semiparametric transformation models for current status data with informative censoring , 2012, Biometrical journal. Biometrische Zeitschrift.

[33]  Xingwei Tong,et al.  REGRESSION ANALYSIS OF CASE II INTERVAL-CENSORED FAILURE TIME DATA WITH THE ADDITIVE HAZARDS MODEL. , 2010, Statistica Sinica.

[34]  Zhigang Zhang,et al.  Statistical analysis of current status data with informative observation times , 2005, Statistics in medicine.

[35]  Zhiliang Ying,et al.  Semiparametric analysis of the additive risk model , 1994 .

[36]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[37]  Philip Hougaard,et al.  Analysis of Multivariate Survival Data , 2001 .

[38]  Peter J. Bickel,et al.  INFERENCE FOR SEMIPARAMETRIC MODELS: SOME QUESTIONS AND AN ANSWER , 2001 .

[39]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .