Ethanol production from materials containing cellulose: The potential of Russian research and development

Development of national research of cellulose-degrading microorganisms and enzymes is reviewed, with emphasis on the prospects of producing ethanol from cellulose materials using cellulolytic enzymes. Leading Russian research groups in this field are introduced. A section of the review analyzes problems and prospects of setting up environmentally friendly production of motor biofuels from renewable raw materials of plant origin (an approach developed in Russia).

[1]  V. Zverlov,et al.  Two new cellulosome components encoded downstream of celI in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. , 2003, Microbiology.

[2]  J. Saddler,et al.  The enzymatic hydrolysis and fermentation of pretreated wood substrates. , 1984, Biotechnology advances.

[3]  G. Zavarzin,et al.  Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake , 2004, Archives of Microbiology.

[4]  V. Zverlov,et al.  Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-beta-1,3-glucanase bound to the outer cell surface. , 2003, Microbiology.

[5]  A. Klyosov,et al.  The activation of cellulases from different sources by actin , 1985, FEBS letters.

[6]  Akimenko Vk,et al.  Cloning and expression of the structural gene of cellulolytic complex endoglucanase of Clostridium thermocellum phi 7 in Escherichia coli cells , 1985 .

[7]  N. V. Ankudimova,et al.  Study of protein adsorption on indigo particles confirms the existence of enzyme--indigo interaction sites in cellulase molecules. , 2001, Journal of biotechnology.

[8]  A. Gusakov,et al.  Decrease in reactivity and change of physico-chemical parameters of cellulose in the course of enzymatic hydrolysis , 1989 .

[9]  T. Zhilina,et al.  Alkaliphilic anaerobic community at pH 10 , 1994, Current Microbiology.

[10]  A. Gusakov,et al.  Application of microassays for investigation of cellulase abrasive activity and backstaining. , 2001, Journal of biotechnology.

[11]  Gusakov,et al.  Surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high denim-washing performance. , 2000, Enzyme and microbial technology.

[12]  E. Reese,et al.  THE BIOLOGICAL DEGRADATION OF SOLUBLE CELLULOSE DERIVATIVES AND ITS RELATIONSHIP TO THE MECHANISM OF CELLULOSE HYDROLYSIS , 1950, Journal of bacteriology.

[13]  A. Gusakov,et al.  A comparative study of different cellulase preparations in the enzymatic treatment of cotton fabrics , 2000 .

[14]  V. Zverlov,et al.  Synergism betweenClostridiwn Thermocellum cellulases cloned inEscherichia coli , 1992, Applied biochemistry and biotechnology.

[15]  Kryukova,et al.  Occurrence of neutral and alkaline cellulases among alkali-tolerant micromycetes , 1999, Systematic and applied microbiology.

[16]  V. Akimenko,et al.  Isolation of a cellobiohydrolase of Clostridium thermocellum capable of degrading natural crystalline substrates. , 1993, Biochemical and Biophysical Research Communications - BBRC.

[17]  G. Velikodvorskaya,et al.  Isolation and characterization of a lichenan-degrading hydrophobic endoglucanase of Clostridium thermocellum , 1993, Applied Microbiology and Biotechnology.

[18]  A. Gusakov,et al.  A hyperefficient process for enzymatic cellulose hydrolysis in the intensive mass transfer reactor , 1993, Biotechnology Letters.

[19]  A. Gusakov,et al.  Enhancement of enzymatic cellulose hydrolysis using a novel type of bioreactor with intensive stirring induced by electromagnetic field , 1996 .

[20]  M. Rabinovich,et al.  COMPARISON OF NEUTRAL AND ALKALINE CELLULASE ACTIVITIES OF SELECTED FUNGI AND STREPTOMYCETES , 1996 .

[21]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[22]  A. Gusakov,et al.  Factors affecting the enzymatic hydrolysis of cellulose in batch and continuous reactors: computer simulation and experiment. , 1987, Biotechnology and bioengineering.

[23]  A. Gusakov,et al.  Isolation and Properties of Pectinases from the Fungus Aspergillus japonicus , 2003, Biochemistry (Moscow).

[24]  G. Velikodvorskaya,et al.  Cloning and Expression of Genes Coding for Carbohydrate Degrading Enzymes of Anaerocellum thermophilum in Escherichia coli , 1994 .

[25]  G. Zavarzin,et al.  Halocella cellulolytica gen. nov., sp. nov., a New Obligately Anaerobic, Halophilic, Cellulolytic bacterium , 1993 .

[26]  T. Bridgwater Biomass for energy , 2006 .

[27]  The Comparative Role of Exoglucosidase and Cellobiase in Glucose Formation from Cellulose , 1980 .

[28]  O. Okunev,et al.  Description of two anaerobic fungal strains from the bovine rumen and influence of diet on the fungal population in vivo. , 1991, Journal of general microbiology.

[29]  A. Gusakov,et al.  Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. , 2004, Biochimica et biophysica acta.

[30]  K. Chumakov,et al.  Ecology, Physiology and Taxonomy Studies on a New Taxon of Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov. , 1992 .

[31]  L. Lynd,et al.  Fuel Ethanol from Cellulosic Biomass , 1991, Science.

[32]  M. Rabinowitch,et al.  Enzymatic Conversion of Cellulose to Glucose: Present State of the Art and Potential , 1980 .

[33]  Charles E. Wyman,et al.  BIOMASS ETHANOL: Technical Progress, Opportunities, and Commercial Challenges , 1999 .

[34]  G. Velikodvorskaya,et al.  Cloning of Clostridium thermocellum endoglucanase genes in Escherichia coli. , 1990, Biochemical and biophysical research communications.

[35]  V. Zverlov,et al.  A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. , 2002, Microbiology.

[36]  V. Zverlov,et al.  Duplicated Clostridium thermocellum cellobiohydrolase gene encoding cellulosomal subunits S3 and S5 , 1999, Applied Microbiology and Biotechnology.

[37]  V. Zverlov,et al.  Thermotoga neapolitana bgIB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase , 1997 .

[38]  N. Rodionova,et al.  Studies on xylan degrading enzymes. I. Purification and characterization of endo-1,4-beta-xylanase from Aspergillus niger str. 14. , 1977, Biochimica et biophysica acta.

[39]  C. Rossell,et al.  Integrated production of biodegradable plastic, sugar and ethanol , 2001, Applied Microbiology and Biotechnology.

[40]  V. Baraznenok,et al.  Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp , 1999 .

[41]  V. Zverlov,et al.  Highly thermostable endo-1,3-beta-glucanase (laminarinase) LamA from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product. , 1997, Microbiology.

[42]  M. Rabinovich,et al.  [Mechanism of the transport of an enzyme adsorbed on the surface of an insoluble substrate]. , 1984, Doklady Akademii nauk SSSR.

[43]  A. Gusakov,et al.  Kinetics of the enzymatic hydrolysis of cellulose: 1. A mathematical model for a batch reactor process , 1985 .

[44]  A. Gusakov,et al.  Kinetics and mathematical model of hydrolysis and transglycosylation catalysed by cellobiase , 1984 .

[45]  N. A. Kostrikina,et al.  Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia , 2004, Extremophiles.

[46]  Charles E. Wyman,et al.  Twenty years of trials, tribulations, and research progress in bioethanol technology , 2001, Applied biochemistry and biotechnology.

[47]  A. Gusakov,et al.  Transglycosylation activity of cellobiohydrolase I from Trichoderma longibrachiatum on synthetic and natural substrates. , 1991, Biochimica et biophysica acta.

[48]  V. Zverlov,et al.  Multidomain Structure and Cellulosomal Localization of the Clostridium thermocellum Cellobiohydrolase CbhA , 1998 .

[49]  I. Kataeva,et al.  Elucidation of the role of hydrophobic interactions in the adsorption of endo-1,4-β-glucanases on polysaccharides , 1992 .

[50]  A. Gusakov,et al.  Enzymatic saccharification of industrial and agricultural lignocellulosic wastes , 1992 .

[51]  V. Zverlov,et al.  The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: differences in beta-glucan binding within family CBM4. , 2001, Microbiology.

[52]  F. Rainey,et al.  Spirochaeta thermophila sp. nov., an Obligately Anaerobic, Polysaccharolytic, Extremely Thermophilic Bacterium , 1992 .

[53]  T. Tourova,et al.  Anoxynatronum sibiricum gen.nov., sp.nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region) , 2003, Extremophiles.

[54]  A. Gusakov,et al.  A theoretical analysis of cellulase product inhibition: Effect of cellulase binding constant, enzyme/substrate ratio, and β‐glucosidase activity on the inhibition pattern , 1992, Biotechnology and bioengineering.

[55]  A. Gusakov,et al.  Interaction between indigo and adsorbed protein as a major factor causing backstaining during cellulase treatment of cotton fabrics , 1998 .

[56]  V. Zverlov,et al.  Nucleotide sequence of the Clostridium thermocellum laminarinase gene. , 1991, Biochemical and biophysical research communications.

[57]  G. Velikodvorskaya,et al.  Purification and properties ofClostridium thermocellum endoglucanase 5 produced inEscherichia coli , 1993 .

[58]  A. Sinitsyn,et al.  Evaluation of hydrolysis conditions of cellulosic materials by Penicillium cellulase , 1995 .

[59]  A. Sinitsyn,et al.  Effect of ionizing radiations on phospholipid metabolism in the liver , 1986 .

[60]  N. Rodionova,et al.  Studies on xylan-degrading enzymes. II. Action pattern of endo-1,4-beta-xylanase from Aspergillus niger str. 14 on xylan and xylooligosaccharides. , 1977, Biochimica et biophysica acta.

[61]  A. Gusakov,et al.  Kinetics of the enzymatic hydrolysis of cellulose: 2. A mathematical model for the process in a plug-flow column reactor , 1985 .

[62]  Alexander V. Gusakov,et al.  Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis , 1991 .

[63]  V. Zverlov,et al.  Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile 'Anaerocellum thermophilum' with separate glycosyl hydrolase family 9 and 48 catalytic domains. , 1998, Microbiology.

[64]  A. M. Bezborodov,et al.  Beta‐Glucosidases from Cellulolytic Fungi Aspergillus Terreus, Geotrichum Candidum, and Trichoderma Longibrachiatum as Typical Glycosidases , 1987, Biotechnology and applied biochemistry.

[65]  V. Zverlov,et al.  Cloning and expression in Escherichia coli of Thermotoga neapolitana genes coding for enzymes of carbohydrate substrate degradation. , 1993, Biochemical and biophysical research communications.

[66]  A. Gusakov,et al.  A theoretical comparison of the reactors for the enzymatic hydrolysis of cellulose. , 1987, Biotechnology and bioengineering.

[67]  A. Sinitsyn,et al.  Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases , 1995 .

[68]  V. Zverlov,et al.  Cloning and expression of Clostridium thermocellum genes coding for thermostable exoglucanases (cellobiohydrolases) in Escherichia coli cells. , 1990, Biochemical and biophysical research communications.