Velocity feedback control with a flywheel proof mass actuator

Abstract This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil–magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs–proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs–proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs–proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

[1]  William S. N. Trimmer,et al.  Microrobots and micromechanical systems , 1989 .

[2]  Paolo Gardonio,et al.  Active damping control unit using a small scale proof mass electrodynamic actuator. , 2008, The Journal of the Acoustical Society of America.

[3]  William Hallauer,et al.  Experimental active vibration damping of a plane truss using hybrid actuation , 1989 .

[4]  Douglas K. Lindner,et al.  OPTIMAL SIZING OF A PROOF-MASS ACTUATOR , 1999 .

[5]  Edward F. Crawley,et al.  Theoretical and experimental investigation of space-realizable inertial actuation for passive and active structural control , 1988 .

[6]  Michael J. Brennan,et al.  Active vibroacoustic control with multiple local feedback loops. , 2002 .

[7]  Malcolm C. Smith Synthesis of mechanical networks: the inerter , 2002, IEEE Trans. Autom. Control..

[8]  Stephen J. Elliott,et al.  Passive and active isolation of structural vibration transmission between two plates connected by a set of mounts , 2000 .

[9]  F. Fahy Sound and structural vibration , 1985 .

[10]  Paul Sas,et al.  Design of a Lightweight, Electrodynamic, Inertial Actuator with Integrated Velocity Sensor for Active Vibration Control of a Thin Lightly-Damped Panel , 2004 .

[11]  Daniel J. Inman,et al.  On the nature of the interaction between structures and proof-mass actuators , 1990 .

[12]  Michele Zilletti,et al.  Feedback control unit with an inerter proof-mass electrodynamic actuator , 2016 .

[13]  Paolo Gardonio,et al.  Active vibration control using an inertial actuator with internal damping. , 2006, The Journal of the Acoustical Society of America.

[14]  Stephen J. Elliott,et al.  The stability of decentralized multichannel velocity feedback controllers using inertial actuators , 2007 .

[15]  Peter L. Balise,et al.  Dynamics of Mechanical and Electromechanical Systems , 2017 .

[16]  Stephen J. Elliott,et al.  Base impedance of velocity feedback control units with proof-mass electrodynamic actuators , 2011 .

[17]  Stephen J. Elliott,et al.  Active vibration isolation using an inertial actuator with local displacement feedback control , 2004 .

[18]  Stephen J. Elliott,et al.  Active vibration isolation using an inertial actuator with local force feedback control , 2004 .

[19]  Oliver Nicholas Baumann,et al.  Destabilization of velocity feedback controllers with stroke limited inertial actuators. , 2007, The Journal of the Acoustical Society of America.

[20]  Chris R. Fuller,et al.  Active control of noise transmission through rectangular plates using multiple piezoelectric or point force actuators , 1991 .

[21]  Dino Sciulli,et al.  Virtual Skyhook Vibration Isolation System , 2002 .

[22]  Stephen J. Elliott,et al.  Feedback compensator for control units with proof-mass electrodynamic actuators , 2012 .

[23]  Stephen J. Elliott,et al.  Feedback stability limits for active isolation systems with reactive and inertial actuators , 2001 .

[24]  Captain Steven Webb,et al.  Passive and Active Control of a Complex Flexible Structure Using Reaction Mass Actuators , 1995 .

[25]  Paolo Gardonio,et al.  Downscaling of proof mass electrodynamic actuators for decentralized velocity feedback control on a panel , 2010 .

[26]  Saburo Matunaga,et al.  Vibration Suppression Using Acceleration Feedback Control with Multiple Proof-Mass Actuators , 1997 .

[27]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[28]  Gregory A. Zvonar,et al.  Performance And Control Of Proof-Mass Actuators Accounting For Stroke Saturation , 1994 .

[29]  Paolo Gardonio,et al.  Smart panels for active structural acoustic control , 2004 .

[30]  Michael J. Brennan,et al.  Mobility and impedance methods in structural dynamics , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[31]  Jan Peirs,et al.  Design of micromechatronic systems: scale laws, technologies, and medical applications , 2001 .

[32]  Gregory A. Zvonar,et al.  Nonlinear Control of a Proof-Mass Actuator , 1997 .

[33]  Daniel J. Inman,et al.  Microprocessor controlled force actuator , 1988 .

[34]  Stephen J. Elliott,et al.  Signal Processing for Active Control , 2000 .

[35]  Paolo Gardonio,et al.  Smart panel with active damping units. Implementation of decentralized control. , 2008, The Journal of the Acoustical Society of America.

[36]  Paolo Gardonio,et al.  Feedback control laws for proof-mass electrodynamic actuators , 2007 .

[37]  Walter D. Pilkey,et al.  Suboptimal feedback vibration control of a beam with a proof-mass actuator , 1989 .

[38]  Douglas K. Lindner,et al.  Vibration Suppression Using a Proofmass Actuator Operating in Stroke/Force Saturation , 1991 .

[39]  Yohji Okada,et al.  Self-sensing Active Vibration Control using the Moving-Coil-Type Actuator , 1995 .