Modelling molecular networks: relationships between different formalisms and levels of details

This document is the deliverable 1.3 of French ANR CALAMAR. It presents a study of different formalisms used for modelling and analyzing large molecular regulation networks, their formal links, in terms of mutual encodings and of abstractions, and the corresponding levels of detail captured.

[1]  Steffen Klamt,et al.  Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling , 2009, BMC Systems Biology.

[2]  J. Gouzé Positive and Negative Circuits in Dynamical Systems , 1998 .

[3]  François Fages,et al.  Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM , 2002 .

[4]  RopersDelphine,et al.  Model Reduction Using Piecewise-Linear Approximations Preserves Dynamic Properties of the Carbon Starvation Response in Escherichia coli , 2011 .

[5]  R. Thomas,et al.  Boolean formalization of genetic control circuits. , 1973, Journal of theoretical biology.

[6]  François Fages,et al.  A general computational method for robustness analysis with applications to synthetic gene networks , 2009, Bioinform..

[7]  El Houssine Snoussi Necessary Conditions for Multistationarity and Stable Periodicity , 1998 .

[8]  El Houssine Snoussi,et al.  Logical identification of all steady states: The concept of feedback loop characteristic states , 1993 .

[9]  René Thomas Regulatory networks seen as asynchronous automata: A logical description , 1991 .

[10]  S. Soliman,et al.  A Unique Transformation from Ordinary Differential Equations to Reaction Networks , 2010, PloS one.

[11]  W. Bentley,et al.  Stochastic kinetic analysis of the Escherichia coli stress circuit using σ32-targeted antisense , 2001 .

[12]  L. Glass,et al.  The logical analysis of continuous, non-linear biochemical control networks. , 1973, Journal of theoretical biology.

[13]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[14]  François Fages,et al.  Formal Cell Biology in Biocham , 2008, SFM.

[15]  Ioannis Xenarios,et al.  A method for the generation of standardized qualitative dynamical systems of regulatory networks , 2005, Theoretical Biology and Medical Modelling.

[16]  Alberto Policriti,et al.  Model building and model checking for biochemical processes , 2007, Cell Biochemistry and Biophysics.

[17]  É. Remy,et al.  Mapping multivalued onto Boolean dynamics. , 2011, Journal of theoretical biology.

[18]  Stephan Merz,et al.  Model Checking , 2000 .

[19]  P. V. Ham,et al.  How to deal with variables with more than two levels , 1979 .

[20]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[21]  E. Barillot,et al.  A comprehensive modular map of molecular interactions in RB/E2F pathway , 2008, Molecular systems biology.

[22]  C. Soulé Graphic Requirements for Multistationarity , 2004, Complexus.

[23]  Masao Nagasaki,et al.  Constructing biological pathway models with hybrid functional petri nets. , 2011, Studies in health technology and informatics.

[24]  Jean-Luc Gouzé,et al.  Comparison between Boolean and piecewise affine differential models for genetic networks , 2009 .

[25]  M. di Bernardo,et al.  Comparing different ODE modelling approaches for gene regulatory networks. , 2009, Journal of theoretical biology.

[26]  Denis Thieffry,et al.  Dynamical roles of biological regulatory circuits , 2007, Briefings Bioinform..

[27]  El Houssine Snoussi Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach , 1989 .

[28]  Elisabeth Remy,et al.  Relations between gene regulatory networks and cell dynamics in Boolean models , 2012, Discret. Appl. Math..

[29]  R. Thomas,et al.  Dynamical behaviour of biological regulatory networks--II. Immunity control in bacteriophage lambda. , 1995, Bulletin of mathematical biology.

[30]  Adrien Richard,et al.  Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. , 2004, Journal of theoretical biology.

[31]  Hidde de Jong,et al.  Model Reduction Using Piecewise-Linear Approximations Preserves Dynamic Properties of the Carbon Starvation Response in Escherichia coli , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[32]  Michael L. Mavrovouniotis,et al.  Petri Net Representations in Metabolic Pathways , 1993, ISMB.

[33]  Aurélien Naldi,et al.  Petri net representation of multi-valued logical regulatory graphs , 2010, Natural Computing.

[34]  Corrado Priami,et al.  Process Calculi Abstractions for Biology , 2009, Algorithmic Bioprocesses.

[35]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[36]  Michael Hucka,et al.  A Correction to the Review Titled "Rules for Modeling Signal-Transduction Systems" by W. S. Hlavacek et al. , 2006, Science's STKE.

[37]  François Fages,et al.  Symbolic Model Checking of Biochemical Networks , 2003, CMSB.

[38]  Claudine Chaouiya,et al.  Petri net modelling of biological networks , 2007, Briefings Bioinform..

[39]  François Fages,et al.  BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge , 2006, Bioinform..

[40]  M SUGITA,et al.  Functional analysis of chemical systems in vivo using a logical circuit equivalent. , 1966, Journal of theoretical biology.

[41]  Elisabetta De Maria,et al.  On Coupling Models Using Model-Checking: Effects of Irinotecan Injections on the Mammalian Cell Cycle , 2009, CMSB.

[42]  Pierre N. Robillard,et al.  Modeling and Simulation of Molecular Biology Systems Using Petri Nets: Modeling Goals of Various Approaches , 2004, J. Bioinform. Comput. Biol..

[43]  Barbara Drossel,et al.  Random Boolean Networks , 2007, 0706.3351.

[44]  François Fages,et al.  Abstract interpretation and types for systems biology , 2008, Theor. Comput. Sci..

[45]  Monika Heiner,et al.  Petri Nets for Systems and Synthetic Biology , 2008, SFM.

[46]  Denis Thieffry,et al.  Qualitative Analysis of Regulatory Graphs: A Computational Tool Based on a Discrete Formal Framework , 2003, POSTA.

[47]  Radu Mateescu,et al.  Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli , 2005, ISMB.

[48]  R. Coutinho,et al.  Discrete time piecewise affine models of genetic regulatory networks , 2005, Journal of mathematical biology.

[49]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[50]  Elisabeth Remy,et al.  From minimal signed circuits to the dynamics of Boolean regulatory networks , 2008, ECCB.

[51]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[52]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..