Complexity-Aware Quantization and Lightweight VLSI Implementation of FIR Filters

The coefficient values and number representations of digital FIR filters have significant impacts on the complexity of their VLSI realizations and thus on the system cost and performance. So, making a good tradeoff between implementation costs and quantization errors is essential for designing optimal FIR filters. This paper presents our complexity-aware quantization framework of FIR filters, which allows the explicit tradeoffs between the hardware complexity and quantization error to facilitate FIR filter design exploration. A new common subexpression sharing method and systematic bit-serialization are also proposed for lightweight VLSI implementations. In our experiments, the proposed framework saves 49%~ 51% additions of the filters with 2's complement coefficients and 10%~ 20% of those with conventional signed-digit representations for comparable quantization errors. Moreover, the bit-serialization can reduce 33%~ 35% silicon area for less timing-critical applications.

[1]  Keshab K. Parhi A systematic approach for design of digit-serial signal processing architectures , 1991 .

[2]  Mahesh Mehendale,et al.  VLSI Synthesis of DSP Kernels: Algorithmic and Architectural Transformations , 2001 .

[3]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[4]  Chip-Hong Chang,et al.  Contention Resolution—A New Approach to Versatile Subexpressions Sharing in Multiple Constant Multiplications , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  L. Rabiner,et al.  A computer program for designing optimum FIR linear phase digital filters , 1973 .

[6]  Yong Ching Lim,et al.  Design of Linear Phase FIR Filters in Subexpression Space Using Mixed Integer Linear Programming , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Chip-Hong Chang,et al.  Design of Low-Complexity FIR Filters Based on Signed-Powers-of-Two Coefficients With Reusable Common Subexpressions , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  Chein-Wei Jen,et al.  Area-effective FIR filter design for multiplier-less implementation , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[9]  Tapio Saramäki,et al.  A systematic algorithm for the design of multiplierless FIR filters , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[10]  Charles E. Leiserson,et al.  Retiming synchronous circuitry , 1988, Algorithmica.

[11]  Kaushik Roy,et al.  Complexity reduction of digital filters using shift inclusive differential coefficients , 2004, IEEE Transactions on Signal Processing.

[12]  H. Samueli,et al.  An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients , 1989 .

[13]  Chein-Wei Jen,et al.  Coefficient optimization for area-effective multiplier-less FIR filters , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[14]  A. Prasad Vinod,et al.  Low power and high-speed implementation of fir filters for software defined radio receivers , 2006, IEEE Transactions on Wireless Communications.

[15]  Chao-Liang Chen,et al.  A trellis search algorithm for the design of FIR filters with signed-powers-of-two coefficients , 1999 .

[16]  Arda Yurdakul,et al.  An Algorithm for the Design of Low-Power Hardware-Efficient FIR Filters , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Peter B. Denyer,et al.  VLSI Signal Processing: A Bit-Serial Approach , 1985 .

[18]  Miodrag Potkonjak,et al.  Multiple constant multiplications: efficient and versatile framework and algorithms for exploring common subexpression elimination , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Kaushik Roy,et al.  CSDC: a new complexity reduction technique for multiplierless implementation of digital FIR filters , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Chip-Hong Chang,et al.  Information Theoretic Approach to Complexity Reduction of FIR Filter Design , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Markus Püschel,et al.  Multiplierless multiple constant multiplication , 2007, TALG.

[22]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[23]  O. Gustafsson,et al.  Design of linear-phase FIR filters combining subexpression sharing with MILP , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..

[24]  Chein-Wei Jen,et al.  Low-power FIR filter realization with differential coefficients and inputs , 2000 .

[25]  In-Cheol Park,et al.  FIR filter synthesis algorithms for minimizing the delay and the number of adders , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[26]  D. Ait-Boudaoud,et al.  Modified sensitivity criterion for the design of powers-of-two FIR filters , 1993 .

[27]  Y. Lim Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude , 1990 .

[28]  L. Wanhammar,et al.  Design of high-speed multiplierless filters using a nonrecursive signed common subexpression algorithm , 2002 .

[29]  Yong Lian,et al.  A polynomial-time algorithm for designing FIR filters with power-of-two coefficients , 2002, IEEE Trans. Signal Process..

[30]  Ibrahim N. Hajj,et al.  Decorrelating (DECOR) transformations for low-power digital filters , 1999 .

[31]  Patrick Schaumont,et al.  A new algorithm for elimination of common subexpressions , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[32]  G. Goossens,et al.  Custom design of a VLSI PCM-FDM transmultiplexer from system specifications to circuit layout using a computer-aided design system , 1986 .

[33]  Youngbeom Jang,et al.  Low-power CSD linear phase FIR filter structure using vertical common sub-expression , 2002 .

[34]  Chiang-Ju Chien,et al.  A novel common-subexpression-elimination method for synthesizing fixed-point FIR filters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[35]  Joos Vandewalle,et al.  Delay management algorithms for digital filter implementations , 1983 .

[36]  Keshab K. Parhi,et al.  VLSI digital signal processing systems , 1999 .

[37]  A. Dempster,et al.  Use of minimum-adder multiplier blocks in FIR digital filters , 1995 .

[38]  David Bull,et al.  Primitive operator digital filters , 1991 .

[39]  Chip-Hong Chang,et al.  Low-power differential coefficients-based FIR filters using hardware-optimised multipliers , 2007, IET Circuits Devices Syst..

[40]  R. Hartley Subexpression sharing in filters using canonic signed digit multipliers , 1996 .

[41]  D. Lingaiah VLSI Synthesis of DSP Kernels: Algorithmic and Architectural Transformations , 2003, IEEE Circuits and Devices Magazine.

[42]  Richard I. Hartley,et al.  Behavioral to structural translation in a bit-serial silicon compiler , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..