Sierpinski object for affine systems

[1]  E. G. Manes Compact Hausdorff objects , 1974 .

[2]  Arun K. Srivastava Fuzzy Sierpinski space , 1984 .

[3]  Robert Lowen,et al.  The epireflective hull of the Sierpinski object in FTS , 1989 .

[4]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[5]  K. I. Rosenthal Quantales and their applications , 1990 .

[6]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[7]  Yves Diers Categories of algebraic sets , 1996, Appl. Categorical Struct..

[8]  Yves Diers Affine algebraic sets relative to an algebraic theory , 1999 .

[9]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[10]  Stephen E. Rodabaugh,et al.  Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .

[11]  Y. Diers Topological geometrical categories , 2002 .

[12]  V. E. Cazanescu Algebraic theories , 2004 .

[13]  E. Giuli THE STRUCTURE OF AFFINE ALGEBRAIC SETS , 2004 .

[14]  Stephen Ernest Rodabaugh,et al.  Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics , 2007, Int. J. Math. Math. Sci..

[15]  Jan Paseka,et al.  Algebraic and Categorical Aspects of Quantales , 2008 .

[16]  Sergey A. Solovyov,et al.  Sobriety and spatiality in varieties of algebras , 2008, Fuzzy Sets Syst..

[17]  Dirk Hofmann,et al.  Affine sets: The structure of complete objects and duality , 2009 .

[18]  B. Banaschewski On the strong amalgamation of Boolean algebras , 2010 .

[19]  Spaces modelled by an algebra on (0, ∞) and their complete objects , 2010 .

[20]  Tomasz Kubiak,et al.  A non-commutative and non-idempotent theory of quantale sets , 2011, Fuzzy Sets Syst..

[21]  Jorge Picado,et al.  Frames and Locales - Topology without points , 2011, Frontiers in mathematics.

[22]  Austin Melton,et al.  Interweaving algebra and topology: Lattice-valued topological systems , 2012, Fuzzy Sets Syst..

[23]  Arun K. Srivastava,et al.  A characterization of the category Q-TOP , 2013, Fuzzy Sets Syst..

[24]  Dirk Hofmann,et al.  Monoidal topology : a categorical approach to order, metric, and topology , 2014 .

[25]  Mustafa Demirci,et al.  Fundamental duality of abstract categories and its applications , 2014, Fuzzy Sets Syst..

[26]  Arun K. Srivastava,et al.  On topological systems , 2016, Soft Comput..

[27]  Austin Melton,et al.  Topological systems as a framework for institutions , 2016, Fuzzy Sets Syst..

[28]  Nitakshi Goyal,et al.  General Topology-I , 2017 .