Magnetoencephalography with a chip-scale atomic magnetometer

We report on the measurement of somatosensory-evoked and spontaneous magnetoencephalography (MEG) signals with a chip-scale atomic magnetometer (CSAM) based on optical spectroscopy of alkali atoms. The uncooled, fiber-coupled CSAM has a sensitive volume of 0.77 mm3 inside a sensor head of volume 1 cm3 and enabled convenient handling, similar to an electroencephalography (EEG) electrode. When positioned over O1 of a healthy human subject, α-oscillations were observed in the component of the magnetic field perpendicular to the scalp surface. Furthermore, by stimulation at the right wrist of the subject, somatosensory-evoked fields were measured with the sensors placed over C3. Higher noise levels of the CSAM were partly compensated by higher signal amplitudes due to the shorter distance between CSAM and scalp.

[1]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[2]  D. Cohen Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents , 1968, Science.

[3]  S. Haroche,et al.  Detection of very weak magnetic fields (10−9gauss) by 87Rb zero-field level crossing resonances , 1969 .

[4]  [Recording of human magnetic fields]. , 1978, Doklady Akademii nauk SSSR.

[5]  M Hämäläinen,et al.  Early deflections of cerebral magnetic responses to median nerve stimulation. , 1989, Electroencephalography and clinical neurophysiology.

[6]  R. Ilmoniemi,et al.  Sampling theory for neuromagnetic detector arrays , 1993, IEEE Transactions on Biomedical Engineering.

[7]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[8]  R. Hari,et al.  Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[10]  G Scheler,et al.  Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. , 2003, Brain : a journal of neurology.

[11]  R Wynands,et al.  Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor. , 2003, Optics express.

[12]  Dietmar Drung,et al.  dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room , 2004 .

[13]  L. Trahms,et al.  Single evoked somatosensory MEG responses extracted by time delayed decorrelation , 2005, IEEE Transactions on Signal Processing.

[14]  J. Kitching,et al.  Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. , 2005, Optics letters.

[15]  S. Taulu,et al.  Presentation of electromagnetic multichannel data: The signal space separation method , 2005 .

[16]  R. Lutwak,et al.  An ultra-low-power physics package for a chip-scale atomic clock , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[17]  D. Hoffman,et al.  Magnetoencephalography with an atomic magnetometer , 2006 .

[18]  Antti Korvenoja,et al.  Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. , 2006, Radiology.

[19]  Alex I. Braginski,et al.  Applications of SQUIDs and SQUID systems , 2006 .

[20]  Dmitry Budker,et al.  Magnetic resonance imaging with an optical atomic magnetometer , 2006, Proceedings of the National Academy of Sciences.

[21]  Svenja Knappe,et al.  Subpicotesla atomic magnetometry with a microfabricated vapour cell , 2007 .

[22]  J. Kitching,et al.  A microfabricated photonic magnetometer , 2008, 2008 IEEE Sensors.

[23]  G. Bison,et al.  A room temperature 19-channel magnetic field mapping device for cardiac signals , 2009, 0906.4869.

[24]  P L Volegov,et al.  MRI with an atomic magnetometer suitable for practical imaging applications. , 2009, Journal of magnetic resonance.

[25]  Naoaki Tanaka,et al.  Clinical applications of magnetoencephalography , 2009, Human brain mapping.

[26]  Svenja Knappe,et al.  Femtotesla atomic magnetometry in a microfabricated vapor cell. , 2010, Optics express.

[27]  Peter C. Hansen,et al.  MEG. An introduction to methods , 2010 .

[28]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[29]  M. Weisend,et al.  Magnetoencephalography with a two color pump-probe fiber-coupled atomic magnetometer. , 2010 .

[30]  N. Mizutani,et al.  Development of a Highly Sensitive Optically Pumped Atomic Magnetometer for Biomagnetic Field Measurements: A Phantom Study , 2010, IEEE Transactions on Magnetics.

[31]  Lutz Trahms,et al.  Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications , 2010 .

[32]  Thomas G. Walker,et al.  Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array , 2011, Physics in medicine and biology.