An approach to the distributionally robust shortest path problem

In this study we consider the shortest path problem where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected loss over an ambiguity set (or a family) of candidate distributions that are consistent with the decision-maker's initial information. The ambiguity set is formed by all distributions that satisfy prescribed linear first-order moment constraints with respect to subsets of arcs and individual probability constraints with respect to particular arcs. Our distributional constraints can be designed from incomplete and partially observable data. Under some additional assumptions the resulting distributionally robust shortest path problem (DRSPP) admits equivalent robust and mixed-integer programming (MIP) reformulations. The robust reformulation is shown to be strongly $NP$-hard, whereas the problem without the first-order moment constraints is proved to be polynomially solvable. We perform numerical experiments to illustrate the advantages of the proposed approach; we also demonstrate that the MIP reformulation of DRSPP can be solved effectively using off-the-shelf solvers.

[1]  Zhong Zhou,et al.  The [alpha]-reliable Mean-Excess Traffic Equilibrium Model with Stochastic Travel Times , 2010 .

[2]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[3]  Fernando Ordóñez,et al.  Robust solutions for network design under transportation cost and demand uncertainty , 2008, J. Oper. Res. Soc..

[4]  V. Kreinovich,et al.  Experimental uncertainty estimation and statistics for data having interval uncertainty. , 2007 .

[5]  Xiaobo Li,et al.  Distributionally Robust Mixed Integer Linear Programs: Persistency Models with Applications , 2013, Eur. J. Oper. Res..

[6]  Roberto Montemanni,et al.  An exact algorithm for the robust shortest path problem with interval data , 2004, Comput. Oper. Res..

[7]  Hong Kam Lo,et al.  Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion , 2006 .

[8]  A. Ruszczynski Stochastic Programming Models , 2003 .

[9]  Adam Kasperski,et al.  Two-stage Combinatorial Optimization Problems under Risk , 2018, Theor. Comput. Sci..

[10]  Daniel Kuhn,et al.  Risk-averse shortest path problems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[11]  Sham M. Kakade,et al.  Towards Minimax Policies for Online Linear Optimization with Bandit Feedback , 2012, COLT.

[12]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[13]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[14]  Hani S. Mahmassani,et al.  Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks , 1999, Transp. Sci..

[15]  Munther A. Dahleh,et al.  The Value of Side Information in Shortest Path Optimization , 2011, IEEE Transactions on Automatic Control.

[16]  Amin Saberi,et al.  INFORMS doi 10.1287/xxxx.0000.0000 c○0000 INFORMS Price of Correlations in Stochastic Optimization , 2022 .

[17]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[18]  Gillian Clare,et al.  Air traffic flow management under uncertainty: application of chance constraints , 2012, ATACCS.

[19]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[20]  Arjun K. Gupta,et al.  Handbook of beta distribution and its applications , 2004 .

[21]  Randolph W. Hall,et al.  TRAVEL OUTCOME AND PERFORMANCE: THE EFFECT OF UNCERTAINTY ON ACCESSIBILITY , 1983 .

[22]  Cheng Wu,et al.  Robust Shortest Path Problem With Distributional Uncertainty , 2018, IEEE Transactions on Intelligent Transportation Systems.

[23]  Dengfeng Sun,et al.  Air traffic flow management under uncertainty using chance-constrained optimization , 2017 .

[24]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[25]  Pawel Zielinski,et al.  The computational complexity of the relative robust shortest path problem with interval data , 2004, Eur. J. Oper. Res..

[26]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[27]  Alexander Shapiro,et al.  Stochastic programming approach to optimization under uncertainty , 2007, Math. Program..

[28]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[29]  Ning Zhu,et al.  Data-driven distributionally robust optimization approach for reliable travel-time-information-gain-oriented traffic sensor location model , 2018, Transportation Research Part B: Methodological.

[30]  Yiyong Pan,et al.  Finding Reliable Shortest Path in Stochastic Time-dependent Network , 2013 .

[31]  Thomas P. Hayes,et al.  Stochastic Linear Optimization under Bandit Feedback , 2008, COLT.

[32]  Dimitris Bertsimas,et al.  Probabilistic Combinatorial Optimization: Moments, Semidefinite Programming, and Asymptotic Bounds , 2004, SIAM J. Optim..

[33]  Jianguo Sun,et al.  The Statistical Analysis of Interval-censored Failure Time Data , 2006 .

[34]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[35]  Gang Yu,et al.  On the robust shortest path problem , 1998 .

[36]  Abdel Lisser,et al.  New reformulations of distributionally robust shortest path problem , 2016, Comput. Oper. Res..

[37]  Pierre Hansen,et al.  Links Between Linear Bilevel and Mixed 0–1 Programming Problems , 1995 .

[38]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[39]  Paweł Zieliński,et al.  Robust Discrete Optimization Under Discrete and Interval Uncertainty: A Survey , 2016 .

[40]  Hong Kam Lo,et al.  Network with degradable links: capacity analysis and design , 2003 .

[41]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[42]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[43]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[44]  L. B. Fu,et al.  Expected Shortest Paths in Dynamic and Stochastic Traf c Networks , 1998 .

[45]  Lester Randolph Ford,et al.  A Suggested Computation for Maximal Multi-Commodity Network Flows , 2004, Manag. Sci..

[46]  Stefan Irnich,et al.  Shortest Path Problems with Resource Constraints , 2005 .

[47]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[48]  Y. Nie,et al.  Shortest path problem considering on-time arrival probability , 2009 .

[49]  Dimitris Bertsimas,et al.  Persistence in discrete optimization under data uncertainty , 2006, Math. Program..

[50]  Christoph Buchheim,et al.  Robust combinatorial optimization under convex and discrete cost uncertainty , 2018, EURO J. Comput. Optim..

[51]  Chung-Piaw Teo,et al.  Mixed 0-1 Linear Programs Under Objective Uncertainty: A Completely Positive Representation , 2009, Oper. Res..

[52]  Patrick Jaillet,et al.  Routing Optimization Under Uncertainty , 2016, Oper. Res..

[53]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[54]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[55]  Gilbert Laporte,et al.  The Vehicle Routing Problem with Stochastic Travel Times , 1992, Transp. Sci..

[56]  John N. Tsitsiklis,et al.  An Analysis of Stochastic Shortest Path Problems , 1991, Math. Oper. Res..

[57]  Yuli Zhang,et al.  Wasserstein distributionally robust shortest path problem , 2019, Eur. J. Oper. Res..

[58]  W. Y. Szeto,et al.  Distribution-free travel time reliability assessment with probability inequalities , 2011 .

[59]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[60]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[61]  Michel Minoux,et al.  On robust maximum flow with polyhedral uncertainty sets , 2009, Optim. Lett..

[62]  Melvyn Sim,et al.  Adaptive Distributionally Robust Optimization , 2019, Manag. Sci..

[63]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[64]  Jan Karel Lenstra,et al.  The complexity of the network design problem , 1978, Networks.

[65]  Daniel Kuhn,et al.  K-adaptability in two-stage distributionally robust binary programming , 2015, Oper. Res. Lett..

[66]  Trivikram Dokka,et al.  An Experimental Comparison of Uncertainty Sets for Robust Shortest Path Problems , 2017, ATMOS.

[67]  S. Waller,et al.  A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform , 2010 .

[68]  Alexander Shapiro,et al.  The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study , 2003, Comput. Optim. Appl..

[69]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[70]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[71]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.