INFERENCES FROM THE DISTRIBUTIONS OF FAST RADIO BURST PULSE WIDTHS, DISPERSION MEASURES, AND FLUENCES

The widths, dispersion measures (DMs), dispersion indices, and fluences of Fast Radio Bursts (FRBs) impose coupled constraints that all models must satisfy. The non-monotonic dependence of burst widths (after deconvolution of instrumental effects) on DMs excludes the intergalactic medium as the location of scattering that broadens the FRBs in time. Temporal broadening far greater than that of pulsars at similar high Galactic latitudes implies that scattering occurs close to the sources where high densities and strong turbulence or heterogeneity are plausible. FRB energetics are consistent with supergiant pulses from young, fast, high-field pulsars at cosmological distances. The distribution of FRB DMs is: (1) inconsistent with that of expanding clouds (such as SNRs); (2) inconsistent with space-limited source populations (such as the local Supercluster); and (3) consistent with intergalactic dispersion of a homogeneous source population at cosmological distances. Finally, the FRB log N ?> – log S ?> relation also indicates a cosmological distribution aside from the anomalously bright Lorimer burst.

[1]  U. Pen,et al.  Non-cosmological FRBs from young supernova remnant pulsars , 2015, 1505.05535.

[2]  J. Neill,et al.  The Arecibo Fast Radio Burst: Dense Circum-burst Medium , 2015, 1511.09137.

[3]  S. Burke-Spolaor,et al.  A survey of FRB fields: limits on repeatability , 2015, 1508.04884.

[4]  P. Chandra,et al.  Identifying the source of perytons at the Parkes radio telescope , 2015, 1504.02165.

[5]  Arun Naidu,et al.  SCATTER BROADENING MEASUREMENTS OF 124 PULSARS AT 327 MHZ , 2015, The Astrophysical Journal.

[6]  E. O. Ofek,et al.  Fast Transients at Cosmological Distances with the SKA , 2015, 1501.07535.

[7]  U. Pen,et al.  LOCAL CIRCUMNUCLEAR MAGNETAR SOLUTION TO EXTRAGALACTIC FAST RADIO BURSTS , 2015, 1501.01341.

[8]  E. Ofek,et al.  A real-time fast radio burst: polarization detection and multiwavelength follow-up , 2014, 1412.0342.

[9]  E. Keane,et al.  Fast radio bursts : search sensitivities and completeness , 2015 .

[10]  S. Burke-Spolaor,et al.  A MILLISECOND INTERFEROMETRIC SEARCH FOR FAST RADIO BURSTS WITH THE VERY LARGE ARRAY , 2014, 1412.7536.

[11]  B. M. Gaensler,et al.  Constraints on the distribution and energetics of fast radio bursts using cosmological hydrodynamic simulations , 2014, 1412.4829.

[12]  R. Shannon,et al.  A FAST RADIO BURST IN THE DIRECTION OF THE CARINA DWARF SPHEROIDAL GALAXY , 2014, 1412.1599.

[13]  K. Bannister,et al.  THE GALACTIC POSITION DEPENDENCE OF FAST RADIO BURSTS AND THE DISCOVERY OF FRB011025 , 2014, 1407.0400.

[14]  X. Siemens,et al.  UvA-DARE ( Digital Academic Repository ) Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey , 2014 .

[15]  J. Katz WHAT PERYTONS ARE NOT, AND MIGHT BE , 2014, 1403.0637.

[16]  J. Neill,et al.  GIANT SPARKS AT COSMOLOGICAL DISTANCES? , 2014, 1402.4766.

[17]  Tao Wang,et al.  Fast radio bursts as a cosmic probe , 2014, 1401.2927.

[18]  J. Luan,et al.  PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS , 2014, 1401.1795.

[19]  J. Katz,et al.  Coherent emission in fast radio bursts , 2013, 1309.3538.

[20]  H. Falcke,et al.  Fast radio bursts: the last sign of supramassive neutron stars , 2013, 1307.1409.

[21]  Jean-Pierre Macquart,et al.  TEMPORAL SMEARING OF TRANSIENT RADIO SOURCES BY THE INTERGALACTIC MEDIUM , 2013, 1308.4459.

[22]  R. P. Eatough,et al.  A strong magnetic field around the supermassive black hole at the centre of the Galaxy , 2013, Nature.

[23]  S. Burke-Spolaor,et al.  A Population of Fast Radio Bursts at Cosmological Distances , 2013, Science.

[24]  W. Lewandowski,et al.  Pulse broadening analysis for several new pulsars and anomalous scattering , 2013, 1306.0738.

[25]  Kristin K. Madsen,et al.  NuSTAR DISCOVERY OF A 3.76 s TRANSIENT MAGNETAR NEAR SAGITTARIUS A* , 2013, 1305.1945.

[26]  R. Ekers,et al.  RADIO BURSTS WITH EXTRAGALACTIC SPECTRAL CHARACTERISTICS SHOW TERRESTRIAL ORIGINS , 2010, 1009.5392.

[27]  S. Mereghetti The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars , 2008, 0804.0250.

[28]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[29]  T. Hankins,et al.  Radio Emission Signatures in the Crab Pulsar , 2007, 0708.2505.

[30]  D. Maoz,et al.  Supernovae in Low-Redshift Galaxy Clusters: The Type Ia Supernova Rate , 2006, astro-ph/0610228.

[31]  Astronomy,et al.  Giant Pulses from PSR B1937+21 with Widths ≤ 15 Nanoseconds and Tb ⩾ 5 × 1039 K, the Highest Brightness Temperature Observed in the Universe , 2004, astro-ph/0408285.

[32]  The Eddington Limit and Soft Gamma Repeaters , 1994, astro-ph/9412083.

[33]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[34]  J. Katz Physical processes in gamma-ray bursts , 1982 .

[35]  B. Rickett,et al.  Interstellar Scattering and Scintillation of Radio Waves , 1977 .

[36]  Strong scintillations in astrophysics. II - A theory of temporal broadening of pulses , 1975 .

[37]  I. P. Williamson Pulse Broadening due to Multiple Scattering in the Interstellar Medium , 1972 .