Light-assisted anodized TiO₂ nanotube arrays.
暂无分享,去创建一个
Mano Misra | M. Misra | Y. R. Smith | S. Mohanty | B. Sarma | Swomitra K Mohanty | York R Smith | Biplab Sarma | Y. Smith
[1] V. Subramanian,et al. Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. , 2009, Environmental science & technology.
[2] P. Schmuki,et al. Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. , 2008, Angewandte Chemie.
[3] S. D. Collins,et al. Porous silicon formation mechanisms , 1992 .
[4] Dong Yang,et al. Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity , 2007 .
[5] Krishnan S. Raja,et al. Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays , 2009 .
[6] Y. Nakato,et al. Photo-oxidation reaction of water on an n-TiO2 electrode. Improvement in efficiency through formation of surface micropores by photo-etching in H2SO4 , 1995 .
[7] A. Bard,et al. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.
[8] M. Misra,et al. Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes , 2008 .
[9] Y. R. Smith,et al. Heterostructural Composites of TiO2 Mesh−TiO2 Nanoparticles Photosensitized with CdS: A New Flexible Photoanode for Solar Cells , 2011 .
[10] Nageh K. Allam,et al. TiO₂ nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor. , 2012, ACS applied materials & interfaces.
[11] Bo Chen,et al. Influence of patterned concave depth and surface curvature on anodization of titania nanotubes and alumina nanopores. , 2011, Langmuir : the ACS journal of surfaces and colloids.
[12] Allen J. Bard,et al. Electrochemical Methods: Fundamentals and Applications , 1980 .
[13] P. Schmuki,et al. Morphological instability leading to formation of porous anodic oxide films. , 2011, Nature materials.
[14] Mano Misra,et al. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. , 2010, ACS nano.
[15] Steve Trigwell,et al. Enhancement of the photoelectrochemical conversion efficiency of nanotubular TiO2 photoanodes using nitrogen plasma assisted surface modification , 2009, Nanotechnology.
[16] V. K. Mahajan,et al. Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light , 2006 .
[17] M. Misra,et al. Templated growth of cadmium zinc telluride (CZT) nanowires using pulsed-potentials in hot non-aqueous solution , 2006 .
[18] A. Manivannan,et al. CO2 photoreduction in the liquid phase over Pd-supported on TiO2 nanotube and bismuth titanate photocatalysts , 2011 .
[19] P. Schmuki,et al. Transparent TiO2 nanotube electrodes via thin layer anodization: fabrication and use in electrochromic devices. , 2009, Langmuir : the ACS journal of surfaces and colloids.
[20] Zhonghai Zhang,et al. Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient Photoelectrocatalytic decomposition of synergistic pollutants. , 2012, ACS applied materials & interfaces.
[21] M. Misra,et al. Formation of TiO2-WO3 nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation , 2012 .
[22] Jan M. Macak,et al. Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.
[23] Yue Liu,et al. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity , 2009, Nanotechnology.
[24] P. Schmuki,et al. Modulated TiO2 nanotube stacks and their use in interference sensors , 2010 .
[25] V. K. Mahajan,et al. Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .
[26] V. Subramanian,et al. Investigation of Physicochemical Parameters That Influence Photocatalytic Degradation of Methyl Orange over TiO2 Nanotubes , 2009 .
[27] Marc Aucouturier,et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .
[28] Lionel Vayssieres,et al. On solar hydrogen & nanotechnology , 2010 .
[29] W. Smyrl,et al. Photoelectrochemical investigations of thin metal-oxide films : TiO2, Al2O3, and HfO2 on the parent metals , 1993 .
[30] Marc Aucouturier,et al. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .
[31] Th. Dittrich,et al. Electron Drift Mobility in Porous TiO2 (Anatase) , 1998 .
[32] Y. R. Smith,et al. Hydrothermal Synthesis of Bi12TiO20 Nanostrucutures Using Anodized TiO2 Nanotubes and Its Application in Photovoltaics , 2010 .
[33] V. K. Mahajan,et al. Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation , 2006 .
[34] Prajna P. Das,et al. Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS , 2008 .
[35] Jan M. Macak,et al. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes , 2005 .
[36] Patrik Schmuki,et al. TiO2 nanotubes and their application in dye-sensitized solar cells. , 2010, Nanoscale.
[37] Aicheng Chen,et al. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. , 2005, Langmuir : the ACS journal of surfaces and colloids.
[38] I. Vrublevsky,et al. Effect of the current density on the volume expansion of the deposited thin films of aluminum during porous oxide formation , 2003 .
[39] Sungho Jin,et al. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. , 2006, Journal of biomedical materials research. Part A.
[40] M. Misra,et al. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes , 2007 .
[41] Lihong Zhang,et al. A study on the oxidation and carbon diffusion of TiC in alumina–titanium carbide ceramics using XPS and Raman spectroscopy , 1998 .
[42] Jan M. Macak,et al. TiO2 nanotubes: H+insertion and strong electrochromic effects , 2006 .
[43] Patrik Schmuki,et al. High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.
[44] Karumbaiah N. Chappanda,et al. Site-specific and patterned growth of TiO2 nanotube arrays from e-beam evaporated thin titanium film on Si wafer , 2012, Nanotechnology.
[45] Krishnan S. Raja,et al. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium , 2005 .
[46] M. Misra,et al. Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. , 2008, Langmuir : the ACS journal of surfaces and colloids.
[47] R. G. Breckenridge,et al. Electrical properties of titanium dioxide semiconductors , 1950 .
[48] Krishnan S. Raja,et al. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications , 2006 .
[49] H. Kisch,et al. Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.
[50] V. Subramanian,et al. CdSe Nanocrystal Assemblies on Anodized TiO2 Nanotubes: Optical, Surface, and Photoelectrochemical Properties , 2012 .
[51] Lothar Frey,et al. Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes , 2006 .
[52] H. Minoura,et al. Designing a TiO2 Nano‐Honeycomb Structure Using Photoelectrochemical Etching , 1999 .
[53] M. Misra,et al. Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti–8Mn alloy , 2007 .
[54] Patrik Schmuki,et al. TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.
[55] Karumbaiah N. Chappanda,et al. Growth and characterization of TiO2 nanotubes from sputtered Ti film on Si substrate , 2012, Nanoscale Research Letters.
[56] M. Misra,et al. Water Photooxidation by TiSi2-TiO2 Nanotubes , 2011 .
[57] Mano Misra,et al. Vertically oriented TiO2 nanotube arrays grown on Ti meshes for flexible dye-sensitized solar cells , 2009 .
[58] R. Wilson,et al. Aging Effects in Single Crystal Reduced Rutile Anodes , 1976 .
[59] Shiwei Lin,et al. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. , 2012, ACS applied materials & interfaces.