SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH 

Diatoms are the world's largest contributors to biosilicification and are one of the predominant contributors to global carbon fixation. Silicon is a major limiting nutrient for diatom growth and hence is a controlling factor in primary productivity. Because our understanding of the cellular metabolism of silicon is limited, we are not fully knowledgeable about intracellular factors that may affect diatom productivity in the oceans. The goal of this review is to present an overview of silicon metabolism in diatoms and to identify areas for future research.

[1]  A. Grossman,et al.  Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes , 2000 .

[2]  M. Brzezinski,et al.  Effects of iron and zinc deficiency on elemental composition and silica production by diatoms , 2000 .

[3]  V. Martin‐Jézéquel,et al.  Modelling Si–N-limited growth of diatoms , 2000 .

[4]  F. Azam,et al.  Silicic acid uptake and incorporation by natural marine phytoplankton populations1 , 2000 .

[5]  M. Brzezinski,et al.  THE CHEMICAL FORM OF DISSOLVED SI TAKEN UP BY MARINE DIATOMS , 1999 .

[6]  N. Kröger,et al.  Polycationic peptides from diatom biosilica that direct silica nanosphere formation. , 1999, Science.

[7]  M. Maldonado,et al.  Decline in Mesozoic reef-building sponges explained by silicon limitation , 1999, Nature.

[8]  Engel G. Vrieling,et al.  LOCATION AND EXPRESSION OF FRUSTULINS IN THE PENNATE DIATOMS CYLINDROTHECA FUSIFORMIS, NAVICULA PELLICULOSA, AND NAVICULA SALINARUM (BACILLARIOPHYCEAE) , 1999 .

[9]  E. G. Vrieling,et al.  SILICON DEPOSITION IN DIATOMS: CONTROL BY THE pH INSIDE THE SILICON DEPOSITION VESICLE , 1999 .

[10]  F. Azam,et al.  Accelerated dissolution of diatom silica by marine bacterial assemblages , 1999, Nature.

[11]  Harald Fischer,et al.  TARGETING AND COVALENT MODIFICATION OF CELL WALL AND MEMBRANE PROTEINS HETEROLOGOUSLY EXPRESSED IN THE DIATOM CYLINDROTHECA FUSIFORMIS (BACILLARIOPHYCEAE) , 1999 .

[12]  G. Stucky,et al.  Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Hildebrand,et al.  Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms , 1998, Molecular and General Genetics MGG.

[14]  N. Kröger,et al.  Diatom cell wall proteins and the cell biology of silica biomineralization. , 1998, Protist.

[15]  Tracy A. Villareal,et al.  Silica production and the contribution of diatoms to new and primary production in the central North Pacific , 1998 .

[16]  D. Hutchins,et al.  Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime , 1998, Nature.

[17]  Shigenobu Takeda,et al.  Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters , 1998, Nature.

[18]  G. Stucky,et al.  Silicatein α: Cathepsin L-like protein in sponge biosilica , 1998 .

[19]  F. Wilkerson,et al.  Silicate regulation of new production in the equatorial Pacific upwelling , 1998, Nature.

[20]  C. Brussaard,et al.  AUTOLYSIS KINETICS OF THE MARINE DIATOM DITYLUM BRIGHTWELLII (BACILLARIOPHYCEAE) UNDER NITROGEN AND PHOSPHORUS LIMITATION AND STARVATION 1 , 1997 .

[21]  M. Brzezinski,et al.  Silica production in the Monterey, California, upwelling system , 1997 .

[22]  R. Rachel,et al.  Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. , 1997, European journal of biochemistry.

[23]  P. Thompson,et al.  Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms , 1997 .

[24]  David M. Nelson,et al.  Diatom growth and productivity in an oligo‐trophic midocean gyre: A 3‐yr record from the Sargasso Sea near Bermuda , 1997 .

[25]  Mark Hildebrand,et al.  A gene family of silicon transporters , 1997, Nature.

[26]  S. Mann,et al.  Ciba Foundation Symposium , 1997 .

[27]  J. West,et al.  Computational model for protein-mediated biomineralization of the diatom frustule , 1996 .

[28]  N. Kröger,et al.  Frustulins: domain conservation in a protein family associated with diatom cell walls. , 1996, European journal of biochemistry.

[29]  David M. Nelson,et al.  Silicic acid depletion and silicon limitation in the plume of the Mississippi River: evidence from kinetic studies in spring and summer , 1996 .

[30]  D. M. Nelson,et al.  Chronic substrate limitation of silicic acid uptake rates in the western Sargasso Sea , 1996 .

[31]  E. Jarvis,et al.  GENETIC TRANSFORMATION OF THE DIATOMS CYCLOTELLA CRYPTICA AND NAVICULA SAPROPHILA , 1995 .

[32]  D. M. Nelson,et al.  Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation , 1995 .

[33]  F. Wilkerson,et al.  The role of a silicate pump in driving new production , 1995 .

[34]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[35]  T. Ku,et al.  228Ra-derived nutrient budgets in the upper equatorial Pacific and the role of 'new' silicate in limiting productivity , 1995 .

[36]  N. Kröger,et al.  A new calcium binding glycoprotein family constitutes a major diatom cell wall component. , 1994, The EMBO journal.

[37]  M. Saier,et al.  A functional superfamily of sodium/solute symporters. , 1994, Biochimica et biophysica acta.

[38]  M. Brzezinski,et al.  SILICON DEPOSITION DURING THE CELL CYCLE OF THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) DETERMINED USING DUAL RHODAMINE 123 AND PROPIDIUM IODIDE STAINING 1 , 1994 .

[39]  Richard Gordon,et al.  The chemical basis of diatom morphogenesis , 1994 .

[40]  M. Hildebrand,et al.  Silicon-responsive cDNA clones isolated from the marine diatom Cylindrotheca fusiformis. , 1993, Gene.

[41]  Ralph E. H. Smith,et al.  COMPARATIVE EFFECTS OF pH AND ALUMINUM ON SILICA‐LIMITED GROWTH AND NUTRIENT UPTAKE IN ASTERIONELLA RALFSII VAR. AMERICANA (BACILLARIOPHYCEAE) 1 , 1993 .

[42]  P. Thompson,et al.  Does energy control the sinking rates of marine diatoms , 1992 .

[43]  A. P. Wheeler,et al.  EVIDENCE OF AN ORGANIC MATRIX FROM DIATOM BIOSILICA 1 , 1992 .

[44]  M. Brzezinski Cell-cycle effects on the kinetics of silicic acid uptake and resource competition among diatoms , 1992 .

[45]  D. M. Nelson,et al.  Role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetic studies in the Ross Sea ice-edge zone , 1992 .

[46]  R. F. Nolting,et al.  Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica , 1991 .

[47]  P. Falkowski,et al.  ACCLIMATION TO SPECTRAL IRRADIANCE IN ALGAE , 1991 .

[48]  D. Turpin EFFECTS OF INORGANIC N AVAILABILITY ON ALGAL PHOTOSYNTHESIS AND CARBON METABOLISM , 1991 .

[49]  Y. Anraku,et al.  Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli B. , 1990, The Journal of biological chemistry.

[50]  R. Gensemer,et al.  ROLE OF ALUMINUM AND GROWTH RATE ON CHANGES IN CELL SIZE AND SILICA CONTENT OF SILICA‐LIMITED POPULATIONS OF ASTERIONELLA RALFSII VAR. AMERICANA(BACILLARIOPHYCEAE) 1 , 1990 .

[51]  M. Brzezinski,et al.  Silicon availability and cell-cycle progression in marine diatoms , 1990 .

[52]  R. Gersonde,et al.  Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1. Vegetative cells , 1990 .

[53]  D. M. Nelson,et al.  Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring , 1989 .

[54]  M. Culver,et al.  EFFECTS OF ENVIRONMENTAL VARIATION ON SINKING RATES OF MARINE PHYTOPLANKTON 1 , 1989 .

[55]  P. Harrison,et al.  Determination of nutrient uptake kinetic parameters: a comparison of methods , 1989 .

[56]  D. Conley,et al.  Differences in silica content between marine and freshwater diatoms , 1989 .

[57]  D. Turpin,et al.  Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae , 1988 .

[58]  B. Prézelin,et al.  DIEL PERIODICITY OF PHOTOSYNTHESIS AND CELL DIVISION COMPARED IN THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) 1 , 1988 .

[59]  Jeremy D. Pickett-Heaps,et al.  VALVE MORPHOGENESIS IN SURIRELLA (BACILLARIOPHYCEAE) 1 , 1988 .

[60]  R. Olson,et al.  Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae , 1987 .

[61]  S. Taguchi,et al.  SILICATE DEFICIENCY AND LIPID SYNTHESIS OF MARINE DIATOMS 1,2 , 1987 .

[62]  D. H. Robinson,et al.  DIATOM MINERALIZATION OF SILICIC ACID. VIII. METABOLIC REQUIREMENTS AND THE TIMING OF PROTEIN SYNTHESIS 1 , 1986 .

[63]  S. Olsen,et al.  Variable kinetics of silicon-limited growth in Thalassiosira pseudonana (Bacillariophyceae) in response to changed chemical composition of the growth medium , 1986 .

[64]  R. Olson,et al.  Effects of environmental stresses on the cell cycle of two marine phytoplankton species. , 1986, Plant physiology.

[65]  B. Leadbeater,et al.  Biomineralization in lower plants and animals. , 1986 .

[66]  C. Sullivan,et al.  Silicification by diatoms. , 1986, Ciba Foundation symposium.

[67]  R. Hodson,et al.  Incorporation versus biosynthesis of leucine: implications for measuring rates of protein synthesis and biomass production by bacteria in marine systems , 1986 .

[68]  N. Taylor Silica incorporation in the diatom Cosinodiscus granii as affected by light intensity , 1985 .

[69]  M. Brzezinski,et al.  THE Si:C:N RATIO OF MARINE DIATOMS: INTERSPECIFIC VARIABILITY AND THE EFFECT OF SOME ENVIRONMENTAL VARIABLES 1 , 1985 .

[70]  D. M. Nelson,et al.  SILICON UPTAKE BY ALGAE WITH NO KNOWN Si REQUIREMENT. II. STRONG pH DEPENDENCE OF UPTAKE KINETIC PARAMETERS IN PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE) 1 , 1985 .

[71]  P. Harrison,et al.  Saturated uptake kinetics: transient response of the marine diatom Thalassiosira pseudonana to ammonium, nitrate, silicate or phosphate starvation , 1984 .

[72]  D. M. Nelson,et al.  SILICON UPTAKE BY ALGAE WITH NO KNOWN Si REQUIREMENT. I. TRUE CELLULAR UPTAKE AND pH‐INDUCED PRECIPITATION BY PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE) AND PLATYMONAS SP. (PRASINOPHYCEAE) 1 , 1984 .

[73]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[74]  R. Olson,et al.  EFFECTS OF PHOTOCYCLES AND PERIODIC AMMONIUM SUPPLY ON THREE MARINE PHYTOPLANKTON SPECIES. II. AMMONIUM UPTAKE AND ASSIMILATION 1 , 1983 .

[75]  Benjamin E. Volcani,et al.  WALL MORPHOGENESIS IN COSCINODISCUS WAILESII GRAN AND ANGST. I. VALVE MORPHOLOGY AND DEVELOPMENT OF ITS ARCHITECTURE 1 , 1983 .

[76]  C. Sullivan,et al.  DIATOM MINERALIZATION OF SILICIC ACID. VII. INFLUENCE OF MICROTUBULE DRUGS ON SYMMETRY AND PATTERN FORMATION IN VALVES OF NAVICULA SAPROPHILA DURING MORPHOGENESIS 1 , 1983 .

[77]  B. Volcani,et al.  Isolation of silicate ionophore(s) from the apochlorotic diatom Nitzschia alba. , 1983, Biochemical and biophysical research communications.

[78]  J. Raven THE TRANSPORT AND FUNCTION OF SILICON IN PLANTS , 1983 .

[79]  C. Sullivan,et al.  DIATOM MINERALIZATION OF SILICIC ACID. VI. THE EFFECTS OF MICROTUBULE INHIBITORS ON SILICIC ACID METABOLISM IN NAVICULA SAPROPHILA 1 , 1983 .

[80]  A. Kamatani Dissolution rates of silica from diatoms decomposing at various temperatures , 1982 .

[81]  P. Harrison,et al.  Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms , 1982 .

[82]  Y. Tardy The chemistry of silica solubility, polymerization, colloid and surface properties, and biochemistry, Ralf K. Iler, 1979 , 1982 .

[83]  I. Morris The Physiological Ecology of Phytoplankton , 1981 .

[84]  B. Volcani Cell Wall Formation in Diatoms: Morphogenesis and Biochemistry , 1981 .

[85]  F. Morel,et al.  The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana1 , 1981 .

[86]  R. Crawford The Siliceous Components of the Diatom Cell Wall and Their Morphological Variation , 1981 .

[87]  B. Volcani,et al.  Silicon in the Cellular Metabolism of Diatoms , 1981 .

[88]  M. Borowitzka,et al.  Morphogenesis and Biochemistry of Diatom Cell Walls , 1981 .

[89]  B. Volcani,et al.  Silicon and Siliceous Structures in Biological Systems , 1981, Springer New York.

[90]  Oswald Kiermayer,et al.  Cytomorphogenesis in Plants , 1981, Cell Biology Monographs.

[91]  B. Volcani,et al.  Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[92]  C. Sullivan DIATOM MINERALIZATION OF SILICIC ACID. V. ENERGETIC AND MACROMOLECULAR REQUIREMENTS FOR Si(OH)4 MINERALIZATION EVENTS DURING THE CELL CYCLE OF NAVICULA PELLICULOSA 1 , 1980 .

[93]  S. Chisholm,et al.  INFLUENCE OF ENVIRONMENTAL FACTORS AND POPULATION COMPOSITION ON THE TIMING OF CELL DIVISION IN THALASSIOSIRA FLUVIATILIS (BACILLARIOPHYCEAE) GROWN ON LIGHT/DARK CYCLES 1 , 1980 .

[94]  W. Broecker,et al.  GEOSECS Atlantic expedition , 1980 .

[95]  J. P. Riley,et al.  Rate of dissolution of diatom silica walls in seawater , 1979 .

[96]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[97]  C. Sullivan DIATOM MINERALIZATION OF SILICIC ACID IV. KINETICS OF SOLUBLE Si POOL FORMATION IN EXPONENTIALLY GROWING AND SYNCHRONIZED NAVICULA PELLICULOSA 1 , 1979 .

[98]  H. Pankratz,et al.  Silica dissolution rates of decomposing phytoplankton assemblages at various temperatures , 1978 .

[99]  T. Okita,et al.  Role of silicon on diatom metabolism. IX. Differential synthesis of DNA polymerases and DNA-binding proteins during silicate starvation and recovery in Cylindrotheca fusiformis. , 1978, Biochimica et biophysica acta.

[100]  S. Chisholm,et al.  Silicic acid incorporation in marine diatoms on light:dark cycles: Use as an assay for phased cell division 1 , 1978 .

[101]  M. Borowitzka,et al.  THE POLYMORPHIC DIATOM PHAEODACTYLUM TRICORNUTUM: ULTRASTRUCTURE OF ITS MORPHOTYPES 1, 2 , 1978 .

[102]  N. Ingri Aqueous Silicic Acid, Silicates and Silicate Complexes , 1978 .

[103]  C. Davis,et al.  Continuous culture of marine diatoms under silicon limitation. 3. A model of Si-limited diatom growth 1 , 1978 .

[104]  M. Furnas,et al.  Influence of temperature and cell size on the division rate and chemical content of the diatom Chaetoceros curvisetum Cleve , 1978 .

[105]  P. Harrison,et al.  Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida , 1977 .

[106]  P. Harrison,et al.  Marine diatoms grown in chemostats under silicate or ammonium limitation. IV. Transient response of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida to a single addition of the limiting nutrient , 1977 .

[107]  E. Durbin STUDIES ON THE AUTECOLOGY OF THE MARINE DIATOM THALASSIOSIRA NORDENSKIOELDII. II. THE INFLUENCE OF CELL SIZE ON GROWTH RATE, AND CARBON, NITROGEN, CHLOROPHYLL a AND SILICA CONTENT 1 , 1977 .

[108]  C. Sullivan DIATOM MINERALIZATION OF SILICIC ACID. II. REGULATION OF Si (OH)4 TRANSPORT RATES DURING THE CELL CYCLE OF NAVICULA PELLICULOSA 1 , 1977 .

[109]  J. E. Burris,et al.  Photosynthesis, photorespiration, and dark respiration in eight species of algae , 1977 .

[110]  David Tilman,et al.  PHOSPHATE AND SILICATE GROWTH AND UPTAKE KINETICS OF THE DIATOMS ASTERIONELLA FORMOSA AND CYCLOTELLA MENEGHINIANA IN BATCH AND SEMICONTINUOUS CULTURE 1 , 1976 .

[111]  C. Sullivan DIATOM MINERALIZATION OK SILICIC ACID. I Si(OH)4 TRANSPORT CHARACTERISTICS IN NAVICULA PELLICULOSA , 1976 .

[112]  C. Davis CONTINUOUS CULTURE OF MARINE DIATOMS UNDER SILICATE LIMITATION. II. EFFECT OF LIGHT INTENSITY ON GROWTH AND NUTRIENT UPTAKE OF SKELETONEMA COSTATUM 1, 2 , 1976 .

[113]  D. M. Nelson,et al.  KINETICS OF SILICIC ACID UPTAKE AND RATES OF SILICA DISSOLUTION IN THE MARINE DIATOM THALASSIOSIRA PSEUDONANA 1, 2 , 1976 .

[114]  S. Chisholm,et al.  Silicic acid uptake and incorporation by natural marine phytoplankton populations1 , 1976 .

[115]  C. Davis,et al.  Marine diatoms grown in chemostats under silicate or ammonium limitation. II. Transient response of Skeletonema costatum to a single addition of the limiting nutrient , 1976 .

[116]  P. Harrison,et al.  Marine diatoms grown in chemostats under silicate or ammonium limitation. I. Cellular chemical composition and steady-state growth kinetics of Skeletonema costatum , 1976 .

[117]  S. Kilham KINETICS OF SILICON‐LIMITED GROWTH IN THE FRESHWATER DIATOM ASTERIONELLA FORMOSA 1, 2 , 1975 .

[118]  W. Thomas,et al.  On silicic acid limitation of diatoms in near-surface waters of the eastern tropical Pacific Ocean☆ , 1975 .

[119]  E. Paasche Growth of the plankton diatom Thalassiosira nordenskioeldii Cleve at low silicate concentrations , 1975 .

[120]  T. Malone Environmental control of phytoplankton cell size , 1975 .

[121]  W. Stewart Algal physiology and biochemistry , 1975 .

[122]  F. Azam,et al.  Role of Silicon in Diatom Metabolism. IV. Subcellular Localization of Silicon and Germanium in Nitzschia alba and Cylindrotheca fusiformis , 1974 .

[123]  J. A. Carter,et al.  Silicic acid uptake by natural populations of marine phytoplankton , 1973 .

[124]  R. Guillard,et al.  KINETICS OF SILICON‐LIMITED GROWTH IN THE MARINE DIATOM THALASSIOSIRA PSEUDONANA HASLE AND HEIMDAL (=CYCLOTELLA NANA HUSTEDT) 1, 2 , 1973 .

[125]  R. Hecky,et al.  The amino acid and sugar composition of diatom cell-walls , 1973 .

[126]  E. Paasche Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species , 1973 .

[127]  E. Paasche Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient , 1973 .

[128]  B. Volcani,et al.  ϵ-N-trimethyl-L-δ -hydroxylysine phosphate and its nonphosphorylated compound in diatom cell walls , 1970 .

[129]  W. Darley,et al.  Role of silicon in diatom metabolism. A silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. , 1969, Experimental cell research.

[130]  B. Volcani,et al.  3,4-Dihydroxyproline: A New Amino Acid in Diatom Cell Walls , 1969, Science.

[131]  B. Volcani,et al.  Studies on the biochemistry and fine structure of silica shell formation in diatoms. Photosynthesis and respiration in silicon-starvation synchrony of Navicula pelliculosa. , 1967, Plant physiology.

[132]  B. Volcani,et al.  STUDIES ON THE BIOCHEMISTRY AND FINE STRUCTURE OF SILICA SHELL FORMATION IN DIATOMS. II. THE STRUCTURE OF THE CELL WALL OF NAVICULA PELLICULOSA (BRÉB.) HILSE , 1966, Journal of phycology.

[133]  H. Pankratz,et al.  POST MITOTIC FINE STRUCTURE OF GOMPHONEMA PARVULUM. , 1964, Journal of ultrastructure research.

[134]  R. Lewin,et al.  Physiology and Biochemistry of Algae. , 1963 .

[135]  J. Lewin The dissolution of silica from diatom walls , 1961 .

[136]  J. Lewin SILICON METABOLISM IN DIATOMS: IV. GROWTH AND FRUSTULE FORMATION IN NAVIGULA PELLICULOSA , 1957 .

[137]  J. Lewin,et al.  SILICON METABOLISM IN DIATOMS , 1955, The Journal of general physiology.

[138]  J. Lewin SILICON METABOLISM IN DIATOMS , 1955, The Journal of general physiology.

[139]  J. Lewin SILICON METABOLISM IN DIATOMS: I. EVIDENCE FOR THE ROLE OF REDUCED SULFUR COMPOUNDS IN SILICON UTILIZATION , 1954 .

[140]  L. Cooper Factors affecting the distribution of silicate in the North Atlantic Ocean and the formation of North Atlantic deep water , 1952, Journal of the Marine Biological Association of the United Kingdom.

[141]  Virtanen Ai Nitrogen assimilation and protein synthesis , 1950 .

[142]  A. Virtanen [Nitrogen assimilation and protein synthesis]. , 1950, Rendiconti - Istituto superiore di sanita.

[143]  J. Monod,et al.  Recherches sur la croissance des cultures bactériennes , 1942 .

[144]  G. Beck,et al.  Actualités scientifiques et industrielles , 1933 .

[145]  A. Rothpletz Ueber die Flysch-Fucoiden und einige andere fossile Algen, sowie über liasische, Diatomeen führende Hornschwämme. , 1896 .