HiTC - Exploration of High Throughput ’C’ experiments

SUMMARY The R/Bioconductor package HiTC facilitates the exploration of high-throughput 3C-based data. It allows users to import and export 'C' data, to transform, normalize, annotate and visualize interaction maps. The package operates within the Bioconductor framework and thus offers new opportunities for future development in this field. AVAILABILITY AND IMPLEMENTATION The R package HiTC is available from the Bioconductor website. A detailed vignette provides additional documentation and help for using the package.

[1]  J. Lawrence,et al.  The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules , 2011, Nature Structural &Molecular Biology.

[2]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[3]  Ming Hu,et al.  HiCNorm: removing biases in Hi-C data via Poisson regression , 2012, Bioinform..

[4]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[5]  K. Sandhu,et al.  Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions , 2006, Nature Genetics.

[6]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[7]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[8]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[9]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[10]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[11]  Job Dekker,et al.  My5C: web tools for chromosome conformation capture studies , 2009, Nature Methods.

[12]  Michael S. Becker,et al.  Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations , 2012, Cell.

[13]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[14]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[15]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[16]  A. Tanay,et al.  Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture , 2011, Nature Genetics.