A Note on Projecting the Cubic Lattice

It is shown that, given any (n−1)-dimensional lattice Λ, there is a vector v∈ℤn such that the orthogonal projection of ℤn onto v⊥ is, up to a similarity, arbitrarily close to Λ. The problem arises in attempting to find the largest cylinder anchored at two points of ℤn and containing no other points of ℤn.

[1]  N. Sloane,et al.  Low-dimensional lattices V. Integral coordinates for integral lattices , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Neil J. A. Sloane,et al.  Low-dimensional lattices. I. Quadratic forms of small determinant , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Sueli I. Rodrigues Costa,et al.  Curves on a sphere, shift-map dynamics, and error control for continuous alphabet sources , 2003, IEEE Transactions on Information Theory.

[4]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[5]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..