Some properties concerning the analysis of generalized Wright function
暂无分享,去创建一个
Nabiullah Khan | Talha Usman | M. Aman | T. Usman | N. Khan | M. Aman
[1] I. Podlubny. Fractional differential equations , 1998 .
[2] H. Flegg. Mikusinski's Operational Calculus , 1974 .
[3] F. Mainardi,et al. The role of the Fox-Wright functions in fractional sub-diffusion of distributed order , 2007, 0711.3779.
[4] Hari M. Srivastava,et al. Extended hypergeometric and confluent hypergeometric functions , 2004, Appl. Math. Comput..
[5] Ji-Hun Yoon. Mellin Transform Method for European Option Pricing with Hull-White Stochastic Interest Rate , 2014, J. Appl. Math..
[6] Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$ , 2014 .
[7] E. Wright. The Asymptotic Expansion of the Generalized Hypergeometric Function , 1935 .
[8] R. Gorenflo,et al. Analytical properties and applications of the Wright function , 2007, math-ph/0701069.
[9] M. El-shahed,et al. An Extension of Wright Function and Its Properties , 2015 .
[10] Jeong-Hoon Kim,et al. The pricing of vulnerable options with double Mellin transforms , 2015 .
[11] Myungjoo Kang,et al. Valuing vulnerable geometric Asian options , 2016, Comput. Math. Appl..
[12] Francesco Mainardi,et al. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.
[13] M. Ali Özarslan,et al. Extension of gamma, beta and hypergeometric functions , 2011, J. Comput. Appl. Math..
[14] E. M. Wright,et al. The asymptotic expansion of integral functions defined by Taylor series , 1940, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[15] E. Wright. On the Coefficients of Power Series Having Exponential Singularities , 1933 .
[16] H. Srivastava,et al. Zeta and q-Zeta Functions and Associated Series and Integrals , 2011 .
[17] E. Wright. THE GENERALIZED BESSEL FUNCTION OF ORDER GREATER THAN ONE , 1940 .
[18] Myungjoo Kang,et al. Pricing vulnerable path-dependent options using integral transforms , 2017, J. Comput. Appl. Math..