INTERACTION OF RECOILING SUPERMASSIVE BLACK HOLES WITH STARS IN GALACTIC NUCLEI

Supermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. The coalescence of the SMBHBs is a distinct source of gravitational wave (GW) radiation. The detections of the strong GW radiation and their possible electromagnetic counterparts are essential. Numerical relativity suggests that the post-merger supermassive black hole (SMBH) gets a kick velocity up to 4000 km s–1 due to the anisotropic GW radiations. Here, we investigate the dynamical coevolution and interaction of the recoiling SMBHs and their galactic stellar environments with one million direct N-body simulations including the stellar tidal disruption by the recoiling SMBHs. Our results show that the accretion of disrupted stars does not significantly affect the SMBH dynamical evolution. We investigate the stellar tidal disruption rates as a function of the dynamical evolution of oscillating SMBHs in the galactic nuclei. Our simulations show that most stellar tidal disruptions are contributed by the unbound stars and occur when the oscillating SMBHs pass through the galactic center. The averaged disruption rate is ~10–6 M ☉ yr–1, which is about an order of magnitude lower than that by a stationary SMBH at similar galactic nuclei. Our results also show that a bound star cluster is around the oscillating SMBH of about ~0.7% the black hole mass. In addition, we discover a massive cloud of unbound stars following the oscillating SMBH. We also investigate the dependence of the results on the SMBH masses and density slopes of the galactic nuclei.

[1]  F. K. Liu X-shaped radio galaxies as observational evidence for the interaction of supermassive binary black holes and accretion disk at pc scale , 2003 .

[2]  A. Loeb,et al.  Star clusters around recoiled black holes in the Milky Way halo , 2008, 0809.4262.

[3]  Guillermo Marcus Martinez,et al.  Accelerating astrophysical particle simulations with programmable hardware (FPGA and GPU) , 2009, Computer Science - Research and Development.

[4]  A. Sillanpää,et al.  OJ 287 - Binary pair of supermassive black holes , 1988 .

[5]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[6]  E. Quataert,et al.  Core Formation in Galactic Nuclei due to Recoiling Black Holes , 2004, astro-ph/0407488.

[7]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2007, Physical review letters.

[8]  S. Komossa,et al.  Tidal Disruption Flares from Recoiling Supermassive Black Holes , 2008, 0807.0223.

[9]  D. Shoemaker,et al.  Unequal mass binary black hole plunges and gravitational recoil , 2006, gr-qc/0601026.

[10]  Roma,et al.  Consequences of Triaxiality for Gravitational Wave Recoil of Black Holes , 2006, astro-ph/0612073.

[11]  Peter Berczik,et al.  Brownian Motion of Black Holes in Dense Nuclei , 2004, astro-ph/0408029.

[12]  Y. Zlochower,et al.  Hangup kicks: still larger recoils by partial spin-orbit alignment of black-hole binaries. , 2011, Physical review letters.

[13]  B. Milliard,et al.  Accepted for Publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 UV/OPTICAL DETECTIONS OF CANDIDATE TIDAL DISRUPTION EVENTS BY GALEX AND CFHTLS 1 , 2022 .

[14]  Binary Black Hole Mergers from Planet-like Migrations. , 1999, The Astrophysical journal.

[15]  Z. Haiman,et al.  THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.

[16]  Piero MadauEliot Quataert The Effect of Gravitational-Wave Recoil on the Demography of Massive Black Holes , 2004 .

[17]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[18]  China.,et al.  Black hole mass and binary model for BL Lac object OJ 287 , 2002, astro-ph/0212475.

[19]  A. Loeb,et al.  Prompt Tidal Disruption of Stars as an Electromagnetic Signature of Supermassive Black Hole Coalescence , 2010, 1004.4833.

[20]  Yale University,et al.  Powerful Flares from Recoiling Black Holes in Quasars , 2007, 0802.3873.

[21]  Ny,et al.  Prompt Shocks in the Gas Disk around a Recoiling Supermassive Black Hole Binary , 2008, 0801.0739.

[22]  Qingjuan Yu Evolution of massive binary black holes , 2001, astro-ph/0109530.

[23]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[24]  R. Kulsrud,et al.  Stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation , 1978 .

[25]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[26]  P. Madau,et al.  SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO , 2009, 0907.0892.

[27]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[28]  Alessia Gualandris,et al.  Ejection of Supermassive Black Holes from Galaxy Cores , 2007, 0708.0771.

[29]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[30]  S. Komossa,et al.  A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0? , 2008, 0804.4585.

[31]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[32]  Dae-Il Choi,et al.  Getting a Kick Out of Numerical Relativity , 2006, astro-ph/0603204.

[33]  X. Chen,et al.  Evolution of Supermassive Black Hole Binaries and Acceleration of Jet Precession in Galactic Nuclei , 2007, 0705.1077.

[34]  P. Madau,et al.  Interaction of Massive Black Hole Binaries with Their Stellar Environment. III. Scattering of Bound Stars , 2007, 0710.4301.

[35]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .

[36]  J. Magorrian,et al.  Tidal Disruption of Stellar Objects by Hard Supermassive Black Hole Binaries , 2007, 0712.0246.

[37]  Hans-Peter Bischof,et al.  EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN NON- AXISYMMETRIC GALAXIES , 2006 .

[38]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[39]  A. Loeb,et al.  Recoiled star clusters in the Milky Way halo: N-body simulations and a candidate search through SDSS , 2011, 1102.3695.

[40]  D. Merritt,et al.  Performance Analysis of Direct N-Body Algorithms on Special-Purpose Supercomputers , 2006, astro-ph/0608125.

[41]  M. Colpi,et al.  Massive Binary Black Holes in the Cosmic Landscape , 2009, 0906.4339.

[42]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[43]  A New Empirical Model for the Structural Analysis of Early-Type Galaxies, and A Critical Review of the Nuker Model* , 2003, astro-ph/0306023.

[44]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[45]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[46]  Abraham Loeb,et al.  Effects of Wandering on the Coalescence of Black Hole Binaries in Galactic Centers , 2003 .

[47]  A. Peres Classical Radiation Recoil , 1962 .

[48]  José A González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[49]  F. K. Liu X‐shaped radio galaxies as observational evidence for the interaction of supermassive binary black holes and accretion disc at parsec scale , 2003, astro-ph/0310691.

[50]  G. Zhao,et al.  Harmonic QPOs and Thick Accretion Disk Oscillations in BL Lac Object AO 0235 + 164 , 2006 .

[51]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[52]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[53]  P. Berczik,et al.  Dynamical friction of massive objects in galactic centres , 2010, 1009.2455.

[54]  Double—double radio galaxies: remnants of merged supermassive binary black holes , 2003, astro-ph/0310045.

[55]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[56]  G. Zhao,et al.  Harmonic QPOs and Thick Accretion Disk Oscillations in the BL Lacertae Object AO 0235+164 , 2006, astro-ph/0606655.

[57]  S. Komossa,et al.  HYPERCOMPACT STELLAR SYSTEMS AROUND RECOILING SUPERMASSIVE BLACK HOLES , 2008, 0809.5046.

[58]  D. Merritt Dynamics of galaxy cores and supermassive black holes. , 2006, Reports on progress in physics. Physical Society.

[59]  Fukun Liu,et al.  ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES , 2009, 0904.4481.

[60]  A massive binary black-hole system in OJ 287 and a test of general relativity , 2008, Nature.

[61]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[62]  J. Krolik,et al.  The Infrared Afterglow of Supermassive Black Hole Mergers , 2008, 0802.3556.

[63]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[64]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[65]  R. Spurzem,et al.  Dynamical evolution of rotating dense stellar systems with embedded black holes , 2010 .

[66]  Marc Favata,et al.  Consequences of Gravitational Radiation Recoil , 2004 .

[67]  Observable signatures of a black hole ejected by gravitational-radiation recoil in a galaxy merger. , 2007, Physical review letters.

[68]  Rainer Spurzem,et al.  Long-Term Evolution of Massive Black Hole Binaries. II. Binary Evolution in Low-Density Galaxies , 2005, astro-ph/0507260.

[69]  Rainer Spurzem,et al.  BINARY BLACK HOLE MERGER IN GALACTIC NUCLEI: POST-NEWTONIAN SIMULATIONS , 2008, 0812.2756.

[70]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007 .

[71]  E. Phinney,et al.  The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.

[72]  D. Merritt,et al.  Chaotic Loss Cones and Black Hole Fueling , 2004 .

[73]  Oliver Porth,et al.  Evolution of growing black holes in axisymmetric galaxy cores , 2011, 1108.3993.

[74]  Junichiro Makino,et al.  Triplets of supermassive black holes: Astrophysics, Gravitational Waves and Detection , 2009, 0910.1587.

[75]  University of California at Santa Cruz,et al.  INTERRUPTION OF TIDAL-DISRUPTION FLARES BY SUPERMASSIVE BLACK HOLE BINARIES , 2009, 0910.4152.

[76]  Toshikazu Ebisuzaki,et al.  Massive black holes in star clusters. I. Equal-mass clusters , 2004 .