Eigenvalues of Graphs and Sobolev Inequalities

We derive bounds for eigenvalues of the Laplacian of graphs using the discrete versions of the Sobolev inequalities and heat kernel estimates.

[1]  Robert Brooks The spectral geometry ofk-regular graphs , 1991 .

[2]  Robert Brooks The Spectral Geometry of K-regular Graphs , 1991 .

[3]  J. Dodziuk,et al.  Spectral and function theory for combi-natorial laplacians , 1987 .

[4]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[5]  P. Sarnak Some Applications of Modular Forms , 1990 .

[6]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[7]  M. Murty Ramanujan Graphs , 1965 .

[8]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[9]  Laurent Saloff-Coste,et al.  GAUSSIAN ESTIMATES FOR MARKOV CHAINS AND RANDOM WALKS ON GROUPS , 1993 .

[10]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[11]  N. Varopoulos,et al.  Isoperimetric inequalities and Markov chains , 1985 .

[12]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[13]  S. Yau,et al.  Estimates of eigenvalues of a compact Riemannian manifold , 1980 .

[14]  P. Buser,et al.  Cayley graphs and planar isospectral domains , 1988 .

[15]  B. Gelbaum,et al.  Problems in analysis , 1964 .

[16]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[17]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[18]  George Polya,et al.  On the Eigenvalues of Vibrating Membranes(In Memoriam Hermann Weyl) , 1961 .