Analysis of Interconnected Oscillators by Dissipativity Theory

This paper employs dissipativity theory for the global analysis of limit cycles in particular dynamical systems of possibly high dimension. Oscillators are regarded as open systems that satisfy a particular dissipation inequality. It is shown that this characterization has implications for the global stability analysis of limit cycle oscillations: i) in isolated oscillators, ii) in interconnections of oscillators, and iii) for the global synchrony analysis in interconnections of identical oscillators

[1]  P. S. Bauer Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[2]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[3]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[4]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[5]  R. Saeks,et al.  The analysis of feedback systems , 1972 .

[6]  V. Yakubovich Frequency-domain criteria for oscillation in nonlinear systems with one stationary nonlinear component , 1973 .

[7]  A. Winfree The geometry of biological time , 1991 .

[8]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[9]  A. Michel Dynamics of feedback systems , 1984, Proceedings of the IEEE.

[10]  E. Lewis An Introduction to the Mathematics of Neurons , 1987, Trends in Neurosciences.

[11]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[12]  V. Berestovskii Homogeneous manifolds with intrinsic metric. II , 1989 .

[13]  V. Yakubovich,et al.  Conditions for auto-oscillations in nonlinear systems , 1989 .

[14]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[15]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[16]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[17]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[18]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[19]  Lars Folke Olsen,et al.  Biochemical oscillations and cellular rhythms: The molecular bases of periodic and chaotic behaviour: Albert Goldbeter. Cambridge University Press, Cambridge, 1996. $99.95 (cloth), 605 + xxiv pp , 1997 .

[20]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[21]  A. Y. Pogromski,et al.  Passivity based design of synchronizing systems , 1998 .

[22]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[23]  L. Chua Passivity and complexity , 1999 .

[24]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[25]  H. Wilson Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience , 1999 .

[26]  Dirk Aeyels,et al.  Practical stability and stabilization , 2000, IEEE Trans. Autom. Control..

[27]  M. Safonov,et al.  Zames-Falb multipliers for MIMO nonlinearities , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[28]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[29]  A. Megretski,et al.  Global analysis of piecewise linear systems using impact maps and quadratic surface Lyapunov functions , 2001, 2001 European Control Conference (ECC).

[30]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[31]  G. Estabrook The Geometry of Biological Time.Second Edition. Interdisciplinary Applied Mathematics, Volume 12. ByArthur T Winfree. New York: Springer. $89.95. xxvi + 777 p; ill.; index of author citations and publications, index of subjects. ISBN: 0–387–98992–7. 2001. , 2002 .

[32]  Andrew R. Teel,et al.  Input-to-state stability for a class of Lurie systems , 2002, Autom..

[33]  R. Murray,et al.  Stability analysis of interconnected nonlinear systems under matrix feedback , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[34]  Munther A. Dahleh,et al.  Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions , 2003, IEEE Trans. Autom. Control..

[35]  Jean-Jacques E. Slotine,et al.  A Study of Synchronization and Group Cooperation Using Partial Contraction Theory , 2004 .

[36]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[37]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[38]  Rodolphe Sepulchre,et al.  Global analysis of limit cycles in networks of oscillators , 2004 .

[39]  Rodolphe Sepulchre,et al.  Feedback mechanisms for global oscillations in Lure systems , 2005, Syst. Control. Lett..

[40]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[41]  X. Liao,et al.  Absolute Stability of Nonlinear Control Systems , 2008 .

[42]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[43]  M. Safonov,et al.  Zames } Falb multipliers for MIMO nonlinearities t , 2022 .