Bayesian empirical likelihood inference with complex survey data
暂无分享,去创建一个
Changbao Wu | Puying Zhao | J. N. K. Rao | Malay Ghosh | M. Ghosh | J. Rao | Puying Zhao | Changbao Wu
[1] J. N. K. Rao,et al. Bayesian Optimization in Sampling Finite Populations , 1972 .
[2] Anna Simoni,et al. Online appendix to : Bayesian Estimation and Comparison of Moment Condition Models , 2017 .
[3] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[4] V. P. Godambe,et al. Parameters of superpopulation and survey population: their relationships and estimation , 1986 .
[5] J. Lawless,et al. Empirical Likelihood and General Estimating Equations , 1994 .
[6] Keming Yu,et al. Bayesian quantile regression , 2001 .
[7] V. Chernozhukov,et al. An MCMC approach to classical estimation , 2003 .
[8] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[9] J. N. K. Rao,et al. Empirical likelihood inference under stratified random sampling using auxiliary population information , 2000 .
[10] W. Fuller,et al. Quantile Estimation with a Complex Survey Design , 1991 .
[11] D. Binder. On the variances of asymptotically normal estimators from complex surveys , 1983 .
[12] N. Lazar. Bayesian empirical likelihood , 2003 .
[13] Jiahua Chen,et al. Empirical likelihood estimation for ?nite populations and the e?ective usage of auxiliary informatio , 1993 .
[14] N. Narisetty,et al. Bayesian variable selection with shrinking and diffusing priors , 2014, 1405.6545.
[15] Xuming He,et al. Bayesian empirical likelihood for quantile regression , 2012, 1207.5378.
[16] D. Mondal,et al. Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation , 2017 .
[17] Shu Yang,et al. Approximate Bayesian inference under informative sampling , 2018 .
[18] L. Wasserman,et al. Asymptotic inference for mixture models by using data‐dependent priors , 2000 .
[19] Malay Ghosh,et al. Higher-order properties of Bayesian empirical likelihood , 2016 .
[20] J. N. K. Rao,et al. Pseudo‐empirical likelihood ratio confidence intervals for complex surveys , 2006 .
[21] J. Monahan,et al. Proper likelihoods for Bayesian analysis , 1992 .
[22] Roderick Little,et al. Calibrated Bayes, for Statistics in General, and Missing Data in Particular , 2011, 1108.1917.
[23] Jianqiang C. Wang,et al. On asymptotic normality and variance estimation for nondifferentiable survey estimators , 2011 .
[24] Susanne M. Schennach,et al. Bayesian exponentially tilted empirical likelihood , 2005 .
[25] J. N. K. Rao,et al. Pseudo–Empirical Likelihood Inference for Multiple Frame Surveys , 2010 .
[26] A. Owen. Empirical likelihood ratio confidence intervals for a single functional , 1988 .
[27] A. Owen. Empirical Likelihood Ratio Confidence Regions , 1990 .
[28] Y. Berger,et al. Modelling complex survey data with population level information: an empirical likelihood approach. , 2016, Biometrika.
[29] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[30] Yves G. Berger,et al. Empirical likelihood confidence intervals for complex sampling designs , 2016 .
[31] J. N. K. Rao,et al. Bayesian pseudo-empirical-likelihood intervals for complex surveys , 2010 .