Relevance feedback methods for logo and trademark image retrieval on the web

Relevance feedback is the state-of-the-art approach for adjusting query results to the needs of the users. This work extends the existing framework of image retrieval with relevance feedback on the Web by incorporating text and image content into the search and feedback process. Some of the most powerful relevance feedback methods are implemented and tested on a fully automated Web retrieval system with more than 250,000 logo and trademark images. This evaluation demonstrates that term re-weighting based on text and image content is the most effective approach.

[1]  Euripides G. M. Petrakis,et al.  Weighted link analysis for logo and trademark image retrieval on the Web , 2005, The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05).

[2]  Andrei Z. Broder,et al.  The Connectivity Server: Fast Access to Linkage Information on the Web , 1998, Comput. Networks.

[3]  HongJiang Zhang Relevance Feedback in Content-based Image Search , 2001, PRIS.

[4]  Qiang Yang,et al.  A unified framework for semantics and feature based relevance feedback in image retrieval systems , 2000, ACM Multimedia.

[5]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[6]  Anil K. Jain,et al.  Shape-Based Retrieval: A Case Study With Trademark Image Databases , 1998, Pattern Recognit..

[7]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[8]  Beng Chin Ooi,et al.  Giving meanings to WWW images , 2000, ACM Multimedia.

[9]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[10]  Christos Faloutsos,et al.  FALCON: Feedback Adaptive Loop for Content-Based Retrieval , 2000, VLDB.

[11]  Ellen M. Voorhees,et al.  Overview of the seventh text retrieval conference (trec-7) [on-line] , 1999 .

[12]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[13]  Mohan S. Kankanhalli,et al.  Content-Based Image Retrieval Using a Composite Color-Shape Approach , 1998, Inf. Process. Manag..

[14]  Ellen M. Voorhees,et al.  Overview of the Seventh Text REtrieval Conference , 1998 .

[15]  Djemel Ziou,et al.  Image Retrieval from the World Wide Web: Issues, Techniques, and Systems , 2004, CSUR.

[16]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[17]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[18]  Mingjing Li,et al.  Web mining for Web image retrieval , 2001, J. Assoc. Inf. Sci. Technol..