Kesan apigenin, berberin dan rutin terhadap metabolisme kolesterol pada sel kanser Hep G2

Dalam kajian ini, keupayaan Apigenin, Berberin dan Rutin untuk mengurangkan metabolisme kolesterol pada sel kanser hepatoma manusia (Hep G2) telah ditentukan. Penilaian sitotoksik Apigenin, Berberin dan Rutin telah dilakukan dengan mendedahkan Hep G2 kepada Apigenin, Berberin dan Rutin pada kepekatan antara 7.8 sehingga 1000 μg/mL selama 24 jam pada suhu 37oC dan 5% atmosfera CO2. Apigenin, Berberin dan Rutin masing-masing mempunyai kepekatan perencat 20 (IC20) 7.8, 125 dan 1000 μg/mL. Keupayaan mengurangkan metabolisme kolesterol oleh Apigenin, Berberin dan Rutin pada Hep G2 telah diuji dengan penyemaian Hep G2 dalam plat 6-telaga. Kumpulan rawatan Apigenin, Berberin dan Rutin telah dirawat dengan kepekatan 7.8, 31.25 dan 62.5 μg/mL masing-masing dan didedah dengan lipoprotein ketumpatan rendah (LDL) sebanyak 10 μL. Dalam kumpulan kawalan normal (NC), Hep G2 telah dieram dengan media kultur sahaja. Sel diinkubasikan dan media telah diambil untuk analisis Apo A1, LCAT, LDLR dan FDFT1 dengan menggunakan kit. Rutin didapati mampu merendahkan aktiviti HMGR secara signifikan (p<0.05) berbanding kawalan normal. Apigenin dan Berberin mampu meningkatkan kepekatan APO A1. Ketiga – tiga sampel mampu meningkatkan kepekatan LCAT pada sel yang dirawat. Selain itu, Apigenin mampu meningkatkan kepekatan LDLR. Keputusan ujian untuk FDFT1 menunjukkan Berberin dan Rutin merendahkan kepekatan FDFT1 dan berbeza secara signifikan (p<0.05) berbanding kawalan normal. Penemuan ini menunjukkan bahawa Apigenin, Berberin dan Rutin mempunyai potensi dalam mengurangkan metabolisme kolesterol dalam sel Hep G2.

[1]  R. Panneerselvam,et al.  Studies on methanolic extract of Rauvolfia species from Southern Western Ghats of India – In vitro antioxidant properties, characterisation of nutrients and phytochemicals , 2012 .

[2]  L. Vaidya,et al.  Hypolipidemic and antihyperlipidemic effects from an aqueous extract of Pachyptera hymenaea (DC.) leaves in rats. , 2012, Food chemistry.

[3]  G. Zhong,et al.  Polyphenolic composition and content in the ripe berries of wild Vitis species , 2012 .

[4]  B. Patil,et al.  Differential inhibition of human colon cancer cells by structurally similar flavonoids of citrus. , 2012, Food chemistry.

[5]  Yuan-Shiun Chang,et al.  Regulation of lipid disorders by ethanol extracts from Zingiber zerumbet in high-fat diet-induced rats. , 2012, Food chemistry.

[6]  D. Ng The role of lecithin:cholesterol acyltransferase in the modulation of cardiometabolic risks - a clinical update and emerging insights from animal models. , 2012, Biochimica et biophysica acta.

[7]  V. Goulas,et al.  Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus , 2012 .

[8]  P. Oliveira,et al.  Berberine as a promising safe anti-cancer agent - is there a role for mitochondria? , 2011, Current drug targets.

[9]  Rui Li,et al.  Berberine Regulated Gck, G6pc, Pck1 and Srebp-1c Expression and Activated AMP-activated Protein Kinase in Primary Rat Hepatocytes , 2011, International journal of biological sciences.

[10]  Hsin-Yi Peng,et al.  Isolation of substances with antiproliferative and apoptosis-inducing activities against leukemia cells from the leaves of Zanthoxylum ailanthoides Sieb. & Zucc. , 2011, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[11]  Young-S. Kim,et al.  Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel , 2010 .

[12]  S. Krähenbühl,et al.  Effect of simvastatin on cholesterol metabolism in C2C12 myotubes and HepG2 cells, and consequences for statin-induced myopathy. , 2010, Biochemical pharmacology.

[13]  A. Dhir,et al.  Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders , 2010, Phytotherapy research : PTR.

[14]  Luca Sebastiani,et al.  Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions , 2008 .

[15]  H. Hosseinzadeh,et al.  Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine , 2008, Phytotherapy research : PTR.

[16]  Jingwen Liu,et al.  The medicinal plant goldenseal is a natural LDL-lowering agent with multiple bioactive components and new action mechanisms Published, JLR Papers in Press, August 2, 2006. , 2006, Journal of Lipid Research.

[17]  L. Chiang,et al.  Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells. , 2006, Cancer letters.

[18]  K. Kim,et al.  Optimal recovery of high-purity rutin crystals from the whole plant of Fagopyrum esculentum Moench (buckwheat) by extraction, fractionation, and recrystallization. , 2005, Bioresource technology.

[19]  S. Kopko The use of rutin in a cat with idiopathic chylothorax. , 2005, The Canadian veterinary journal = La revue veterinaire canadienne.

[20]  J. Oram,et al.  Molecular basis of cholesterol homeostasis: lessons from Tangier disease and ABCA1. , 2002, Trends in molecular medicine.

[21]  Myung‐Sook Choi,et al.  Effect of rutin and tannic acid supplements on cholesterol metabolism in rats , 2002 .

[22]  W. März,et al.  Effect of atorvastatin, simvastatin, and lovastatin on the metabolism of cholesterol and triacylglycerides in HepG2 cells. , 2001, Biochemical pharmacology.

[23]  J. Kim,et al.  Studies on the plasma lipid profiles, and LCAT and CETP activities according to hyperlipoproteinemia phenotypes (HLP). , 2001, Atherosclerosis.

[24]  F. Ranelletti,et al.  Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential , 2000, International journal of cancer.

[25]  Simon Stewart,et al.  Epidemiology, aetiology, and prognosis of heart failure , 2000, Heart.

[26]  Amr Salameh,et al.  The extraction of apigenin and luteolin from the sage Salvia officinalis L. from Jordan , 2000 .

[27]  G A Colditz,et al.  Economic costs of obesity and inactivity. , 1999, Medicine and science in sports and exercise.

[28]  S. Lin-Shiau,et al.  Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. , 1999, European journal of cancer.

[29]  P. Conlin,et al.  The dietary approaches to stop hypertension (DASH) clinical trial: implications for lifestyle modifications in the treatment of hypertensive patients. , 1999, Cardiology in review.

[30]  M. McQueen,et al.  Reverse cholesterol transport--a review of the process and its clinical implications. , 1997, Clinical biochemistry.

[31]  G. Bilder,et al.  1-Hydroxy-3-(methylpentylamino)-propylidene-1,1-bisphosphonic acid as a potent inhibitor of squalene synthase. , 1996, Arzneimittel-Forschung.

[32]  O. Larsson,et al.  HMG-CoA reductase inhibitors: role in normal and malignant cells. , 1996, Critical reviews in oncology/hematology.

[33]  W. Qin,et al.  Regulation of HMG-CoA reductase, apoprotein-B and LDL receptor gene expression by the hypocholesterolemic drugs simvastatin and ciprofibrate in Hep G2, human and rat hepatocytes. , 1992, Biochimica et biophysica acta.

[34]  T. Furuya,et al.  Isolation of berberine from callus tissue of coptis japonica , 1972 .