Conservative Integrators for Many-body Problems

Conservative symmetric second–order one–step schemes are derived for dynamical systems describing various many–body systems using the Discrete Multiplier Method. This includes conservative schemes for the n-species Lotka–Volterra system, the n-body problem with radially symmetric potential and the n-point vortex models in the plane and on the sphere. In particular, we recover Greenspan–Labudde’s conservative schemes for the n-body problem. Numerical experiments are shown verifying the conservative property of the schemes and second–order accuracy.

[1]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[2]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[3]  E. Hairer,et al.  Accurate long-term integration of dynamical systems , 1995 .

[4]  O. Hijazi Application of symmetry methods to partial differential equations , 2013 .

[5]  Francesco Calogero,et al.  Classical Many-Body Problems Amenable to Exact Treatments: , 2002 .

[6]  Hassan Aref,et al.  Point vortex dynamics: A classical mathematics playground , 2007 .

[7]  G. Marsaglia Choosing a Point from the Surface of a Sphere , 1972 .

[8]  Jason Frank,et al.  Explicit, parallel Poisson integration of point vortices on the sphere , 2016, J. Comput. Appl. Math..

[9]  G. S. Turner,et al.  Discrete gradient methods for solving ODEs numerically while preserving a first integral , 1996 .

[10]  C. Scovel Symplectic Numerical Integration of Hamiltonian Systems , 1991 .

[11]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[12]  P. Kuchynka,et al.  The Planetary and Lunar Ephemerides DE430 and DE431 , 2014 .

[13]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[14]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[15]  Melvin Leok,et al.  A Novel Formulation of Point Vortex Dynamics on the Sphere: Geometrical and Numerical Aspects , 2012, J. Nonlinear Sci..

[16]  R. Schimming Conservation laws for Lotka–Volterra models , 2003 .

[17]  P. Saffman,et al.  Long-time symplectic integration: the example of four-vortex motion , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  R. D. Vogelaere,et al.  Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .

[19]  Donald Greenspan,et al.  Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion , 1975 .

[20]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[21]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[22]  Jean-Christophe Nave,et al.  On the Arbitrarily Long-Term Stability of Conservative Methods , 2016, SIAM J. Numer. Anal..

[23]  Jean-Christophe Nave,et al.  The Multiplier Method to Construct Conservative Finite Difference Schemes for Ordinary and Partial Differential Equations , 2014, SIAM J. Numer. Anal..

[24]  I. Romero,et al.  Energy-momentum conserving integration schemes for molecular dynamics , 2020, 2005.05869.

[25]  David Cohen,et al.  Linear energy-preserving integrators for Poisson systems , 2011 .

[26]  E. Hairer Energy-Preserving Variant of Collocation Methods 12 , 2010 .

[27]  Jean-Christophe Nave,et al.  Conservative Methods for Dynamical Systems , 2016, SIAM J. Numer. Anal..

[28]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[29]  P. Olver Applications of lie groups to differential equations , 1986 .

[30]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .