Impact of incorporated Al on the TiN/HfO2 interface effective work function

First principles calculations of the impact of Al incorporation on the effective work function of a TiN/HfO2 interface are presented. The undoped interface has a midgap effective work function. We find that Al in the metal and Al substituting for O in the dielectric make the effective work function more n-type. More importantly, Al substituting for Hf in the oxide near the interface—the energetically stable position for most growth conditions—increases the effective work function, making it more p-type. Furthermore, the shift of the work function increases with increasing the Al concentration at the interface. The calculated results are consistent with experimental data.

[1]  G. Pourtois,et al.  Te-induced modulation of the Mo∕HfO2 interface effective work function , 2008 .

[2]  G. Bersuker,et al.  Effects of aluminum incorporation on band alignment at the Si O2 Hf O2 interface , 2008 .

[3]  D. Kwong,et al.  Decoupling the Fermi-level pinning effect and intrinsic limitations on p-type effective work function metal electrodes , 2008 .

[4]  H. Yu,et al.  Effective Work-Function Modulation by Aluminum-Ion Implantation for Metal-Gate Technology $(\hbox{Poly-Si/TiN/SiO}_{2})$ , 2007, IEEE Electron Device Letters.

[5]  D. Gilmer,et al.  Application of group electronegativity concepts to the effective work functions of metal gate electrodes on high- κ gate oxides , 2007 .

[6]  J. Robertson,et al.  Control of Schottky barrier heights on high-K gate dielectrics for future complementary metal-oxide semiconductor devices. , 2007, Physical review letters.

[7]  S. Kubicek,et al.  The Study of Effective Work Function Modulation by As Ion Implantation in TiN/TaN/HfO2 Stacks , 2007 .

[8]  L. Fonseca,et al.  First-principles calculation of the TiN effective work function on Si O 2 and on Hf O 2 , 2006 .

[9]  Martin M. Frank,et al.  Advanced high-k dielectric stacks with polySi and metal gates: Recent progress and current challenges , 2006, IBM J. Res. Dev..

[10]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[11]  C. Cabral,et al.  Interfacial segregation of dopants in fully silicided metal-oxide-semiconductor gates , 2005 .

[12]  D. Boyd,et al.  Threshold voltage control in NiSi-gated MOSFETs through SIIS , 2005, IEEE Transactions on Electron Devices.

[13]  S. Samavedam,et al.  Challenges for the integration of metal gate electrodes , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[14]  M. L. Lovejoy,et al.  Fermi-level pinning at the polysilicon/metal-oxide interface-Part II , 2004, IEEE Transactions on Electron Devices.

[15]  L. Pantisano,et al.  On the thermal stability of atomic layer deposited TiN as gate electrode in MOS devices , 2003, IEEE Electron Device Letters.

[16]  Chenming Hu,et al.  Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology , 2002 .

[17]  V. Fiorentini,et al.  Theoretical evaluation of zirconia and hafnia as gate oxides for si microelectronics. , 2002, Physical review letters.

[18]  Chenming Hu,et al.  An adjustable work function technology using Mo gate for CMOS devices , 2002, IEEE Electron Device Letters.

[19]  Luigi Colombo,et al.  Application of HfSiON as a gate dielectric material , 2002 .

[20]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[21]  Evgeni P. Gusev,et al.  Structure and stability of ultrathin zirconium oxide layers on Si(001) , 2000 .

[22]  S. Louie,et al.  Structural properties and quasiparticle band structure of zirconia , 1998 .

[23]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[24]  A. Stoneham,et al.  Metal-non-metal and other interfaces: the role of image interactions , 1985 .

[25]  R. Ruh,et al.  Crystal structure of monoclinic hafnia and comparison with monoclinic zirconia Locality: synthetic , 1970 .

[26]  N. A. Sörensen,et al.  An X-Ray Investigation on Ternary Phases in the Ta-Me-N Systems (Me = Ti, Cr, Mn, Fe, Co, Ni). , 1954 .