Noncommuting multidimensional realization theory: minimality, reachability, and observability

A generalization of the notions of minimality, reachability, and observability for parameter dependent and multidimensional systems modeled by linear fractional transformations over noncommuting operators is presented. The multidimensional system results developed herein are formally similar to and directly specialize to the standard results when one-dimensional systems are considered.

[1]  Donald D. Givone,et al.  Multidimensional Linear Iterative Circuits - General Properties , 1972, IEEE Trans. Computers.

[2]  R. D'Andrea,et al.  Software for modeling, analysis, and control design for multidimensional systems , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[3]  Donald D. Givone,et al.  Minimization of Multidimensional Linear Iterative Circuits , 1973, IEEE Transactions on Computers.

[4]  N. Bose Applied multidimensional systems theory , 1982 .

[5]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[6]  John Doyle,et al.  A necessary and sufficient minimality condition for uncertain systems , 1999, IEEE Trans. Autom. Control..

[7]  A. Isidori Direct construction of minimal bilinear realizations from nonlinear input-output maps , 1973 .

[8]  A. Megretski Necessary and sufficient conditions of stability: a multiloop generalization of the circle criterion , 1993, IEEE Trans. Autom. Control..

[9]  Geir E. Dullerud,et al.  A new approach for analysis and synthesis of time-varying systems , 1999, IEEE Trans. Autom. Control..

[10]  Michel Fliess,et al.  Une théorie fonctionnelle de la réalisation en filtrage multidimensionnel, échantillonné, récurrent , 1979, Inf. Control..

[11]  Geir E. Dullerud,et al.  Distributed control design for spatially interconnected systems , 2003, IEEE Trans. Autom. Control..

[12]  R. D'Andrea Linear matrix inequalities, multidimensional system optimization, and control of spatially distributed systems: an example , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[13]  C. Beck,et al.  Minimality, controllability and observability for uncertain systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[14]  M. B. Reed,et al.  Realization Theory of Discrete-Time Nonlinear Systems: Part I - The Bounded Case , 1979 .

[15]  G. E. Colling,et al.  New Results in 2-D Systems Theory, Part II: 2-D State-Space Models-Realization and the Notions of Controllability, Observability, and Minimality , 1977 .

[16]  G. Marchesini,et al.  State-space realization theory of two-dimensional filters , 1976 .

[17]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[18]  Ettore Fornasini,et al.  On the relevance of noncommutative power series in spatial filters realization , 1978 .

[19]  E. Zerz Topics in Multidimensional Linear Systems Theory , 2000 .

[20]  M. Morf,et al.  New results in 2-D systems theory, part II: 2-D state-space models—Realization and the notions of controllability, observability, and minimality , 1977, Proceedings of the IEEE.

[21]  R. D'Andrea,et al.  Kalman decomposition of linear fractional transformation representations and minimality , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[22]  J. Shamma Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..

[23]  Ettore Fornasini,et al.  On the Problems of Constructing Minimal Realizations for Two-Dimensional Filters , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Peter F. Sturm,et al.  Adaptive Tracking of Non-Rigid Objects Based on Color Histograms and Automatic Parameter Selection , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.