Basal ganglia–cortical interactions in Parkinsonian patients

[1]  Stefan Rotter,et al.  The Role of Inhibition in Generating and Controlling Parkinson’s Disease Oscillations in the Basal Ganglia , 2011, Front. Syst. Neurosci..

[2]  Thomas Boraud,et al.  Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. , 2008, Journal of neurophysiology.

[3]  Dagoberto Tapia,et al.  Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. , 2006, Journal of neurophysiology.

[4]  M. Chiquet Neurite growth inhibition by CNS myelin proteins: A mechanism to confine fiber tracts? , 1989, Trends in Neurosciences.

[5]  Ralf Deichmann,et al.  Resting state fMRI reveals increased subthalamic nucleus–motor cortex connectivity in Parkinson's disease , 2011, NeuroImage.

[6]  Steven W. Johnson,et al.  Dopamine depletion alters responses to glutamate and GABA in the rat subthalamic nucleus , 2005, Neuroreport.

[7]  D. Plenz,et al.  A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus , 1999, Nature.

[8]  Peter Brown,et al.  Reciprocal interactions between oscillatory activities of different frequencies in the subthalamic region of patients with Parkinson's disease , 2005, The European journal of neuroscience.

[9]  A. Oliviero,et al.  Movement-related changes in synchronization in the human basal ganglia. , 2002, Brain : a journal of neurology.

[10]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[11]  Hitoshi Kita,et al.  Subthalamo‐pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia , 2011, The European journal of neuroscience.

[12]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[13]  A. Nambu A new dynamic model of the cortico-basal ganglia loop. , 2004, Progress in brain research.

[14]  Charles J. Wilson,et al.  Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. , 2002, Journal of neurophysiology.

[15]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[16]  Raymond J. Dolan,et al.  Dynamic causal models of steady-state responses , 2009, NeuroImage.

[17]  M. Delong,et al.  Primate models of movement disorders of basal ganglia origin , 1990, Trends in Neurosciences.

[18]  D. Hansel,et al.  Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia , 2022 .

[19]  Peter Brown,et al.  Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson's disease surgery , 2006, Experimental Neurology.

[20]  P. Brown,et al.  New insights into the relationship between dopamine, beta oscillations and motor function , 2011, Trends in Neurosciences.

[21]  J. Bolam,et al.  Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network , 2001, Neuroscience.

[22]  Joshua L. Plotkin,et al.  The role of dopamine in modulating the structure and function of striatal circuits. , 2010, Progress in brain research.

[23]  Peter Brown,et al.  Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson's disease , 2007, Experimental Neurology.

[24]  H. Bergman,et al.  Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. , 1990, Science.

[25]  T. Chase Striatal plasticity and extrapyramidal motor dysfunction. , 2004, Parkinsonism & related disorders.

[26]  J. M. Spyers-Ashby,et al.  A comparison of fast fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data , 1998, Journal of Neuroscience Methods.

[27]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[28]  G. Halliday,et al.  The progression of pathology in Parkinson's disease , 2010, Annals of the New York Academy of Sciences.

[29]  Jozsef Csicsvari,et al.  Disrupted Dopamine Transmission and the Emergence of Exaggerated Beta Oscillations in Subthalamic Nucleus and Cerebral Cortex , 2008, The Journal of Neuroscience.

[30]  Peter Brown,et al.  Effects of dopamine depletion on information flow between the subthalamic nucleus and external globus pallidus. , 2011, Journal of neurophysiology.

[31]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[32]  Michelle M. McCarthy,et al.  Striatal origin of the pathologic beta oscillations in Parkinson's disease , 2011, Proceedings of the National Academy of Sciences.

[33]  John R. Terry,et al.  Conditions for the Generation of Beta Oscillations in the Subthalamic Nucleus–Globus Pallidus Network , 2010, The Journal of Neuroscience.

[34]  K. Gurney,et al.  A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia , 2006, The Journal of Neuroscience.

[35]  A. Oliviero,et al.  Dopamine Dependency of Oscillations between Subthalamic Nucleus and Pallidum in Parkinson's Disease , 2001, The Journal of Neuroscience.

[36]  C. Wilson,et al.  Equilibrium potential of GABA(A) current and implications for rebound burst firing in rat subthalamic neurons in vitro. , 2000, Journal of neurophysiology.

[37]  P. Stanzione,et al.  Stimulation of the subthalamic nucleus compared with the globus pallidus internus in patients with Parkinson disease. , 2004, Journal of neurosurgery.

[38]  P. Brown,et al.  Stimulation of the subthalamic region at 20Hz slows the development of grip force in Parkinson's disease , 2011, Experimental Neurology.

[39]  J. Bolam,et al.  Selective Innervation of Neostriatal Interneurons by a Subclass of Neuron in the Globus Pallidus of the Rat , 1998, The Journal of Neuroscience.

[40]  A. Parent,et al.  Axonal branching pattern of neurons of the subthalamic nucleus in primates , 2000, The Journal of comparative neurology.

[41]  Raymond J. Dolan,et al.  Alterations in Brain Connectivity Underlying Beta Oscillations in Parkinsonism , 2011, PLoS Comput. Biol..

[42]  Jérôme Baufreton,et al.  D2‐like dopamine receptor‐mediated modulation of activity‐dependent plasticity at GABAergic synapses in the subthalamic nucleus , 2008, The Journal of physiology.

[43]  D James Surmeier,et al.  Enhancement of Excitatory Synaptic Integration by GABAergic Inhibition in the Subthalamic Nucleus , 2005, The Journal of Neuroscience.

[44]  Steven Finkbeiner,et al.  Rapid Target-Specific Remodeling of Fast-Spiking Inhibitory Circuits after Loss of Dopamine , 2011, Neuron.

[45]  A. Oliviero,et al.  Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. , 2002, Brain : a journal of neurology.

[46]  Jérôme Baufreton,et al.  Synaptic release of dopamine in the subthalamic nucleus , 2004, The European journal of neuroscience.

[47]  Charles J. Wilson,et al.  Move to the rhythm: oscillations in the subthalamic nucleus–external globus pallidus network , 2002, Trends in Neurosciences.

[48]  S. Johnson,et al.  Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro , 2000, The Journal of physiology.

[49]  Peter Brown,et al.  Parkinsonian Beta Oscillations in the External Globus Pallidus and Their Relationship with Subthalamic Nucleus Activity , 2008, The Journal of Neuroscience.

[50]  Charles J. Wilson,et al.  Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia , 2002, The Journal of Neuroscience.

[51]  Peter Brown,et al.  Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans , 2009, Current Biology.

[52]  C. Hammond,et al.  Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: Computer analysis of dendrites and characterization of axon arborization , 1983, Neuroscience.

[53]  D. Willshaw,et al.  Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[55]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.