Molecular modelling studies on Arylthioindoles as potent inhibitors of tubulin polymerization.

[1]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[2]  AC Tose Cell , 1993, Cell.

[3]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[4]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[5]  G. Vriend,et al.  Prediction of protein conformational freedom from distance constraints , 1997, Proteins.

[6]  N. Lawrence,et al.  Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle , 1998, Medicinal research reviews.

[7]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[8]  D. Covell,et al.  Mapping the binding site of colchicinoids on beta -tubulin. 2-Chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. , 2000, The Journal of biological chemistry.

[9]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[10]  Heather A. Carlson,et al.  Development of polyphosphate parameters for use with the AMBER force field , 2003, J. Comput. Chem..

[11]  Andrea Brancale,et al.  Arylthioindoles, potent inhibitors of tubulin polymerization. , 2004, Journal of medicinal chemistry.

[12]  Benjamin A Hall,et al.  Dynamite: a simple way to gain insight into protein motions. , 2004, Acta crystallographica. Section D, Biological crystallography.

[13]  Patrick A. Curmi,et al.  Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain , 2004, Nature.

[14]  M. Jordan,et al.  Microtubules as a target for anticancer drugs , 2004, Nature Reviews Cancer.

[15]  T. Fojo,et al.  The clinical development of new mitotic inhibitors that stabilize the microtubule. , 2004, Anti-cancer drugs.

[16]  Ben Cornett,et al.  The Binding Mode of Epothilone A on α,ß-Tubulin by Electron Crystallography , 2004, Science.

[17]  D. Zaharevitz,et al.  A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. , 2005, Journal of medicinal chemistry.

[18]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[19]  Mark S. Gordon,et al.  Chapter 41 – Advances in electronic structure theory: GAMESS a decade later , 2005 .

[20]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[21]  Andrea Brancale,et al.  New arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies. , 2006, Journal of medicinal chemistry.

[22]  Matthew P. Repasky,et al.  Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. , 2006, Journal of medicinal chemistry.

[23]  Thomas Stützle,et al.  PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design , 2006, ANTS Workshop.

[24]  Imran Siddiqi,et al.  Solvated Interaction Energy (SIE) for Scoring Protein-Ligand Binding Affinities, 1. Exploring the Parameter Space , 2007, J. Chem. Inf. Model..

[25]  Anna Ivana Scovassi,et al.  Arylthioindole inhibitors of tubulin polymerization. 3. Biological evaluation, structure-activity relationships and molecular modeling studies. , 2007, Journal of medicinal chemistry.

[26]  Traian Sulea,et al.  MP1-p14 Scaffolding complex , 2008 .

[27]  E. Novellino,et al.  New arylthioindoles and related bioisosteres at the sulfur bridging group. 4. Synthesis, tubulin polymerization, cell growth inhibition, and molecular modeling studies. , 2009, Journal of medicinal chemistry.

[28]  C. Villard,et al.  Microtubule targeting agents: from biophysics to proteomics , 2010, Cellular and Molecular Life Sciences.

[29]  Raimond B G Ravelli,et al.  Variations in the colchicine-binding domain provide insight into the structural switch of tubulin , 2009, Proceedings of the National Academy of Sciences.

[30]  J. Gibrat,et al.  The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications , 2010, PloS one.

[31]  Klaus Schulten,et al.  Going beyond Clustering in MD Trajectory Analysis: An Application to Villin Headpiece Folding , 2010, PloS one.