Bifurcation from relative periodic solutions

Relative periodic solutions are ubiquitous in dynamical systems with continuous symmetry. Recently, Sandstede, Scheel and Wulff derived a center bundle theorem, reducing local bifurcation from relative periodic solutions to a finite-dimensional problem. Independently, Lamb and Melbourne showed how to systematically study local bifurcation from isolated periodic solutions with discrete spatiotemporal symmetries. In this paper, we show how the center bundle theorem, when combined with certain group theoretic results, reduces bifurcation from relative periodic solutions to bifurcation from isolated periodic solutions. In this way, we obtain a systematic approach to the study of local bifurcation from relative periodic solutions.

[1]  G. Fusco,et al.  Advanced Topics in the Theory of Dynamical Systems , 1989 .

[2]  M. El-Hamdi,et al.  Rotating and Modulated Rotating States of Cellular Flames , 1994 .

[3]  Some remarks on period doubling in systems with symmetry , 1995 .

[4]  Jeroen S. W. Lamb,et al.  Local bifurcations ink-symmetric dynamical systems , 1996 .

[5]  S. A. Robertson,et al.  NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .

[6]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[7]  Local structure of equivariant dynamics , 1991 .

[8]  J. Lamb,et al.  Bifurcation From Periodic Solutions with Spatiotemporal Symmetry , 1999 .

[9]  BIFURCATIONS OF PERIODIC ORBITS WITH SPATIO-TEMPORAL SYMMETRIES , 1997, patt-sol/9704002.

[10]  Michael Field Symmetry breaking for compact Lie groups , 1996 .

[11]  M. Gorman,et al.  Spatial and temporal characteristics of modulated waves in the circular Couette system , 1982, Journal of Fluid Mechanics.

[12]  A. L. Onishchik,et al.  Lie Groups and Lie Algebras III , 1993 .

[13]  Harry L. Swinney,et al.  Flow regimes in a circular Couette system with independently rotating cylinders , 1986, Journal of Fluid Mechanics.

[14]  Hermann E Riecke Symmetries in modulated traveling waves in combustion: jumping ponies on a merry-go-round: Symmetry Methods and Applications , 1996 .

[15]  D. P. Zhelobenko Compact Lie Groups and Their Representations , 1973 .

[16]  Martin Golubitsky,et al.  Hopf Bifurcation from Rotating Waves and Patterns in Physical Space , 2000, J. Nonlinear Sci..

[17]  B. Fiedler Global Bifurcation of Periodic Solutions with Symmetry , 1988 .

[18]  Bernold Fiedler,et al.  Normal Forms, Resonances, and Meandering Tip Motions near Relative Equilibria of Euclidean Group Actions , 1998 .

[19]  A. Winfree The geometry of biological time , 1991 .

[20]  Martin Golubitsky,et al.  Pattern Formation in Continuous and Coupled Systems , 1999 .

[21]  Drift bifurcations of relative equilibria and transitions of spiral waves , 1999 .

[22]  Martin Krupa,et al.  Bifurcations of relative equilibria , 1990 .

[23]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[24]  Björn Sandstede,et al.  Dynamics of Spiral Waves on Unbounded Domains Using Center-Manifold Reductions , 1997 .

[25]  G. R. W. Quispel,et al.  Reversing k-symmetries in dynamical systems , 1994 .

[26]  Björn Sandstede,et al.  Bifurcations and Dynamics of Spiral Waves , 1999 .

[27]  N. Wiegmann,et al.  Some Theorems On Matrices With Real Quaternion Elements , 1955, Canadian Journal of Mathematics.

[28]  Harry L. Swinney,et al.  Periodic to quasiperiodic transition of chemical spiral rotation , 1991 .

[29]  Richard S. Palais,et al.  On the Existence of Slices for Actions of Non-Compact Lie Groups , 1961 .

[30]  P. Ashwin,et al.  Noncompact drift for relative equilibria and relative periodic orbits , 1997 .

[31]  Petrov,et al.  Transition from Simple Rotating Chemical Spirals to Meandering and Traveling Spirals. , 1996, Physical review letters.

[32]  Bernold Fiedler,et al.  Bifurcation from Relative Equilibria of Noncompact Group Actions: Skew Products, Meanders, and Drift , 1996 .

[33]  I. G. MacDonald,et al.  Lectures on Lie groups and Lie algebras , 1995 .

[34]  J. Lamb,et al.  Bifurcation from Discrete Rotating Waves , 1999 .

[35]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[36]  A. Bruno Normal forms , 1998 .

[37]  Martin Golubitsky,et al.  Iterates of maps with symmetry , 1988 .

[38]  M. Field,et al.  SYMMETRY BREAKING FOR EQUIVARIANT MAPS , 2003 .

[39]  E. A. Ermakova,et al.  On the interaction of vortices in two-dimensional active media , 1989 .