Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes

The human gut microbiota supplies its host with essential nutrients, including B-vitamins. Using the PubSEED platform, we systematically assessed the genomes of 256 common human gut bacteria for the presence of biosynthesis pathways for eight B-vitamins: biotin, cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, and thiamin. On the basis of the presence and absence of genome annotations, we predicted that each of the eight vitamins was produced by 40–65% of the 256 human gut microbes. The distribution of synthesis pathways was diverse; some genomes had all eight biosynthesis pathways, whereas others contained no de novo synthesis pathways. We compared our predictions to experimental data from 16 organisms and found 88% of our predictions to be in agreement with published data. In addition, we identified several pairs of organisms whose vitamin synthesis pathway pattern complemented those of other organisms. This analysis suggests that human gut bacteria actively exchange B-vitamins among each other, thereby enabling the survival of organisms that do not synthesize any of these essential cofactors. This result indicates the co-evolution of the gut microbes in the human gut environment. Our work presents the first comprehensive assessment of the B-vitamin synthesis capabilities of the human gut microbiota. We propose that in addition to diet, the gut microbiota is an important source of B-vitamins, and that changes in the gut microbiota composition can severely affect our dietary B-vitamin requirements.

[1]  A. Osterman,et al.  Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental bacteria from the Chloroflexi phylum. , 2015, Environmental microbiology reports.

[2]  P. Degnan,et al.  Vitamin B12 as a modulator of gut microbial ecology. , 2014, Cell metabolism.

[3]  H. Harmsen,et al.  Functional Metabolic Map of Faecalibacterium prausnitzii, a Beneficial Human Gut Microbe , 2014, Journal of bacteriology.

[4]  Fangfang Xia,et al.  The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) , 2013, Nucleic Acids Res..

[5]  A. Osterman,et al.  Genomics-Guided Analysis of NAD Recycling Yields Functional Elucidation of COG1058 as a New Family of Pyrophosphatases , 2013, PloS one.

[6]  Christian Milani,et al.  Bacteria as vitamin suppliers to their host: a gut microbiota perspective. , 2013, Current opinion in biotechnology.

[7]  Narmada Thanki,et al.  CDD: conserved domains and protein three-dimensional structure , 2012, Nucleic Acids Res..

[8]  Christoph Steinbeck,et al.  The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 , 2012, Nucleic Acids Res..

[9]  D. MacCannell Bacterial strain typing. , 2013, Clinics in laboratory medicine.

[10]  Malcolm J. McConville,et al.  MR1 presents microbial vitamin B metabolites to MAIT cells , 2012, Nature.

[11]  H. Harmsen,et al.  How can Faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer? , 2012, Antioxidants & redox signaling.

[12]  Svetlana Gerdes,et al.  Plant B vitamin pathways and their compartmentation: a guide for the perplexed. , 2012, Journal of experimental botany.

[13]  S. Schuster,et al.  NAD+ biosynthesis and salvage – a phylogenetic perspective , 2012, The FEBS journal.

[14]  Robert H. White,et al.  Comparative Genomics Guided Discovery of Two Missing Archaeal Enzyme Families Involved in the Biosynthesis of the Pterin Moiety of Tetrahydromethanopterin and Tetrahydrofolate , 2012, ACS chemical biology.

[15]  M. Gelfand,et al.  Glutamine versus Ammonia Utilization in the NAD Synthetase Family , 2012, PloS one.

[16]  Katherine H. Huang,et al.  A framework for human microbiome research , 2012, Nature.

[17]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[18]  A. Osterman,et al.  Identification of Nicotinamide Mononucleotide Deamidase of the Bacterial Pyridine Nucleotide Cycle Reveals a Novel Broadly Conserved Amidohydrolase Family* , 2011, The Journal of Biological Chemistry.

[19]  C. Abbas,et al.  Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers , 2011, Microbiology and Molecular Reviews.

[20]  J. Cronan,et al.  Closing in on complete pathways of biotin biosynthesis. , 2011, Molecular bioSystems.

[21]  Peer Bork,et al.  Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy , 2011, Nucleic Acids Res..

[22]  S. Raimondi,et al.  Folate Production by Probiotic Bacteria , 2011, Nutrients.

[23]  Marcus J. Claesson,et al.  Composition, variability, and temporal stability of the intestinal microbiota of the elderly , 2010, Proceedings of the National Academy of Sciences.

[24]  Robert Olson,et al.  Accessing the SEED Genome Databases via Web Services API: Tools for Programmers , 2010, BMC Bioinformatics.

[25]  J. Auwerx,et al.  The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. , 2010, Endocrine reviews.

[26]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[27]  W. D. de Vos,et al.  Development of a minimal growth medium for Lactobacillus plantarum , 2010, Letters in applied microbiology.

[28]  Didier Raoult,et al.  Bacterial strain typing in the genomic era. , 2009, FEMS microbiology reviews.

[29]  Charles Brenner,et al.  Microbial NAD Metabolism: Lessons from Comparative Genomics , 2009, Microbiology and Molecular Biology Reviews.

[30]  T. Begley,et al.  The structural and biochemical foundations of thiamin biosynthesis. , 2009, Annual review of biochemistry.

[31]  Satohiro Masuda,et al.  Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. , 2008, American journal of physiology. Cell physiology.

[32]  R. Allen,et al.  Identification and quantitation of cobalamin and cobalamin analogues in human feces. , 2008, The American journal of clinical nutrition.

[33]  Sang-Woon Choi,et al.  Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling and folate uptake in human colonic epithelial cell lines. , 2008, The Journal of nutritional biochemistry.

[34]  W. D. de Vos,et al.  The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. , 2008, Microbiology.

[35]  S. Masuda,et al.  Identification and functional characterization of a novel human and rat riboflavin transporter , RFT 1 , 2008 .

[36]  W. M. Vos,et al.  The complete coenzyme B 12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098 , 2007 .

[37]  C. Brenner,et al.  NAD+ metabolism in health and disease. , 2007, Trends in biochemical sciences.

[38]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[39]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[40]  L. De Colibus,et al.  New frontiers in structural flavoenzymology. , 2006, Current opinion in structural biology.

[41]  R. Overbeek,et al.  Comparative Genomics of NAD Biosynthesis in Cyanobacteria , 2006, Journal of bacteriology.

[42]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[43]  W. D. de Vos,et al.  Genetic Diversity of Viable, Injured, and Dead Fecal Bacteria Assessed by Fluorescence-Activated Cell Sorting and 16S rRNA Gene Analysis , 2005, Applied and Environmental Microbiology.

[44]  A. Bernalier-Donadille,et al.  Interaction between H2-producing and non-H2-producing cellulolytic bacteria from the human colon. , 2005, FEMS microbiology letters.

[45]  K. Shanmugam,et al.  Pyruvate Formate Lyase and Acetate Kinase Are Essential for Anaerobic Growth of Escherichia coli on Xylose , 2004, Journal of bacteriology.

[46]  M. Mcmurdo,et al.  Comparison of Compositions and Metabolic Activities of Fecal Microbiotas in Young Adults and in Antibiotic-Treated and Non-Antibiotic-Treated Elderly Subjects , 2004, Applied and Environmental Microbiology.

[47]  E. Andrès,et al.  Vitamin B12 (cobalamin) deficiency in elderly patients , 2004, Canadian Medical Association Journal.

[48]  H. Said,et al.  Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. , 2004, Annual review of physiology.

[49]  A. Prentice,et al.  Vitamin B12 and folate deficiency in later life. , 2004, Age and ageing.

[50]  Tadhg P Begley,et al.  NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. , 2003, Chemistry & biology.

[51]  D. Hodgson,et al.  Development of a Synthetic Minimal Medium for Listeria monocytogenes , 2003, Applied and Environmental Microbiology.

[52]  Jeroen Hugenholtz,et al.  Lactobacillus reuteri CRL1098 Produces Cobalamin , 2003, Journal of bacteriology.

[53]  C. Plass,et al.  SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Dmitry A Rodionov,et al.  Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea. , 2002, Genome research.

[55]  H. Mobley,et al.  Helicobacter pylori Growth and Urease Detection in the Chemically Defined Medium Ham's F-12 Nutrient Mixture , 2001, Journal of Clinical Microbiology.

[56]  J. Day,et al.  Bacterial DNA ligases , 2001, Molecular microbiology.

[57]  P. Dorrestein,et al.  The biosynthesis of nicotinamide adenine dinucleotides in bacteria. , 2001, Vitamins and hormones.

[58]  D. Downs,et al.  Metabolic Defects Caused by Mutations in the isc Gene Cluster in Salmonella enterica Serovar Typhimurium: Implications for Thiamine Synthesis , 2000, Journal of bacteriology.

[59]  C. Metges Contribution of microbial amino acids to amino acid homeostasis of the host. , 2000, The Journal of nutrition.

[60]  P. Stewart,et al.  Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin , 2000, Antimicrobial Agents and Chemotherapy.

[61]  V. Ganapathy,et al.  Molecular and functional characterization of the intestinal Na+-dependent multivitamin transporter. , 1999, Archives of biochemistry and biophysics.

[62]  J. Klima,et al.  Determination of Bacterial Cell Dry Mass by Transmission Electron Microscopy and Densitometric Image Analysis , 1998, Applied and Environmental Microbiology.

[63]  its Panel on Folate,et al.  STANDING COMMITTEE ON THE SCIENTIFIC EVALUATION OF DIETARY REFERENCE INTAKES , 1998 .

[64]  M. Hill Intestinal flora and endogenous vitamin synthesis , 1997, European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation.

[65]  S. Nakamura,et al.  A defined growth medium for Clostridium difficile. , 1995, Microbiology.

[66]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[67]  S. Jackowski,et al.  Cloning, sequence, and expression of the pantothenate permease (panF) gene of Escherichia coli , 1990, Journal of bacteriology.

[68]  N. W. Flodin Handbook of Vitamins , 1987 .

[69]  H. E. Kubitschek,et al.  Determination of bacterial cell volume with the Coulter Counter , 1986, Journal of bacteriology.

[70]  K. Roth Biotin in clinical medicine--a review. , 1981, The American journal of clinical nutrition.

[71]  H. Lichstein,et al.  Uptake of extracellular biotin by Escherichia coli biotin prototrophs , 1978, Journal of bacteriology.

[72]  D. Savage Microbial ecology of the gastrointestinal tract. , 1977, Annual review of microbiology.

[73]  E. Stokstad,et al.  Transport and utilization of methyltetrahydrofolates by Lactobacillus casei. , 1976, The Journal of biological chemistry.

[74]  M. Wolin Metabolic interactions among intestinal microorganisms. , 1974, The American journal of clinical nutrition.

[75]  M. P. Bryant,et al.  Nutritional features of Bacteroides fragilis subsp. fragilis. , 1974, Applied microbiology.

[76]  B. Olivera,et al.  Pyridine nucleotide metabolism in Escherichia coli. 3. Biosynthesis from alternative precursors in vivo. , 1973, The Journal of biological chemistry.

[77]  W. Dempsey,et al.  Role of Vitamin B6 Biosynthetic Rate in the Study of Vitamin B6 Synthesis in Escherichia coli , 1971 .

[78]  H. Neujahr,et al.  Studies of thiamine uptake in growing cultures and in cell fragments of Lactobacillus fermenti. , 1971, Acta chemica Scandinavica.

[79]  W. B. Dempsey Role of vitamin B 6 biosynthetic rate in the study of vitamin B 6 synthesis in Escherichia coli. , 1971, Journal of bacteriology.

[80]  V. Herbert,et al.  A palatable diet for producing experimental folate deficiency in man. , 1963, The American journal of clinical nutrition.

[81]  A. Wilson,et al.  Regulation of flavin synthesis by Escherichia coli. , 1962, Journal of General Microbiology.

[82]  B. D. Davis,et al.  MUTANTS OF ESCHERICHIA COLI REQUIRING METHIONINE OR VITAMIN B12 , 1950, Journal of bacteriology.

[83]  N. Doblhamer Vitamin B12. , 1950, Wiener medizinische Wochenschrift.