Estimating plot volume using lidar height and intensity distributional parameters

This study explored the feasibility of height distributional metrics and intensity values extracted from low-density airborne light detection and ranging (lidar) data to estimate plot volumes in dense Korean pine (Pinus koraiensis) plots. Multiple linear regression analyses were performed using lidar height and intensity distributional metrics. The candidate variables for predicting plot volume were evaluated using three data sets: total, canopy, and integrated lidar height and intensity metrics. All intensities of lidar returns used were corrected by the reference distance. Regression models were developed using each data set, and the first criterion used to select the best models was the corrected Akaike Information Criterion (AICc). The use of three data sets was statistically significant at R2 = 0.75 (RMSE = 52.17 m3 ha−1), R2 = 0.84 (RMSE = 45.24 m3 ha−1), and R2 = 0.91 (RMSE = 31.48 m3 ha−1) for total, canopy, and integrated lidar distributional metrics, respectively. Among the three data sets, the integrated lidar metrics-derived model showed the best performance for estimating plot volumes, improving errors up to 42% when compared to the other two data sets. This is attributed to supplementing variables weighted and biased to upper limits in dense plots with more statistical variables that explain the lower limits. In all data sets, intensity metrics such as skewness, kurtosis, standard deviation, minimum, and standard error were employed as explanatory variables. The use of intensity variables improved the accuracy of volume estimation in dense forests compared to prior research. Correction of the intensity values contributed up to a maximum of 58% improvement in volume estimation when compared to the use of uncorrected intensity values (R2 = 0.78, R2 = 0.53, and R2 = 0.63 for total, canopy, and integrated lidar distributional metrics, respectively). It is clear that the correction of intensity values is an essential step for the estimation of forest volume.

[1]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[2]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[3]  Kevin Lim,et al.  LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada , 2012, Remote. Sens..

[4]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[5]  J. Neter,et al.  Applied Linear Regression Models , 1983 .

[6]  H. Acquah,et al.  A bootstrap approach to evaluating the performance of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) in selection of an asymmetric price relationship. , 2012 .

[7]  John A. Scrivani,et al.  Lidar-based Mapping of Forest Volume and Biomass by Taxonomic Group Using Structurally Homogenous Segments , 2008 .

[8]  Tomas Brandtberg Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America , 2003 .

[9]  P. Gong,et al.  Subtropical Tree Recognition with Hyperspectral Data Analysis in Hong Kong , 2001 .

[10]  Donald G. Leckie,et al.  Advances in remote sensing technologies for forest surveys and management , 1990 .

[11]  Richard A. Groeneveld,et al.  Measuring Skewness and Kurtosis , 1984 .

[12]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[13]  E. Næsset Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data , 2009 .

[14]  M. Heurich,et al.  DETECTING AND MEASURING INDIVIDUAL TREES WITH LASER SCANNING IN MIXED MOUNTAIN FOREST OF CENTRAL EUROPE USING AN ALGORITHM DEVELOPED FOR SWEDISH BOREAL FOREST CONDITIONS , 2004 .

[15]  Pol Coppin,et al.  Reconstruction of tree structure from laser-scans and their use to predict physiological properties and processes in canopies , 2004 .

[16]  R. Nelson Modeling forest canopy heights: The effects of canopy shape , 1997 .

[17]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[18]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[19]  L. Leemis Applied Linear Regression Models , 1991 .

[20]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[21]  T. O. Kvålseth Cautionary Note about R 2 , 1985 .

[22]  Mary E. Martin,et al.  Determining Forest Species Composition Using High Spectral Resolution Remote Sensing Data , 1998 .

[23]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[24]  Juha Hyyppä,et al.  A comparative study of the use of laser scanner data and field measurements in the prediction of crown height in boreal forests , 2006 .

[25]  Colin L. Mallows,et al.  Some Comments on Cp , 2000, Technometrics.

[26]  D. A. Crouse,et al.  Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM , 2006 .

[27]  E. Næsset,et al.  Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .

[28]  D. A. Hill,et al.  Combined high-density lidar and multispectral imagery for individual tree crown analysis , 2003 .

[29]  J. Means,et al.  Predicting forest stand characteristics with airborne scanning lidar , 2000 .

[30]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[31]  P. Litkey,et al.  Algorithms and methods of airborne laser-scanning for forest measurements , 2004 .

[32]  Megan W. Lang,et al.  Lidar intensity for improved detection of inundation below the forest canopy , 2009, Wetlands.

[33]  Yong Q. Tian,et al.  Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data , 2007 .

[34]  Liviu Theodor Ene,et al.  Simultaneously acquired airborne laser scanning and multispectral imagery for individual tree species identification , 2012 .

[35]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[36]  Nicholas C. Coops,et al.  Assessment of forest structure with airborne LiDAR and the effects of platform altitude , 2006 .

[37]  Ranga B. Myneni,et al.  Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks , 2003 .

[38]  B. Koch,et al.  Detection of individual tree crowns in airborne lidar data , 2006 .

[39]  Ants Vain,et al.  Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data , 2009, Sensors.

[40]  David J. Harding,et al.  Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements , 2001 .

[41]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[42]  Forest stand height determination from low point density airborne laser scanning data in Roznava Forest enterprise zone (Slovakia) , 2013 .

[43]  C. L. Mallows Some Comments onCp , 1973 .

[44]  C. Peterson,et al.  Catastrophic wind damage to North American forests and the potential impact of climate change. , 2000, The Science of the total environment.

[45]  Pete Watt,et al.  Measuring forest structure with terrestrial laser scanning , 2005 .

[46]  P. Gong,et al.  Detection of individual trees and estimation of tree height using LiDAR data , 2007, Journal of Forest Research.

[47]  A. Kitchen,et al.  Cautionary Note , 2000, Vox sanguinis.

[48]  J. A. Tullis,et al.  An Evaluation of Lidar-derived Elevation and Terrain Slope in Leaf-off Conditions , 2005 .

[49]  Menas Kafatos,et al.  Estimating stem volume and biomass of Pinus koraiensis using LiDAR data , 2010, Journal of Plant Research.

[50]  Eduardo González-Ferreiro,et al.  Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .

[51]  R. O’Brien,et al.  A Caution Regarding Rules of Thumb for Variance Inflation Factors , 2007 .

[52]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[53]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[54]  Richard G. Oderwald,et al.  Spectral Separability among Six Southern Tree Species , 2000 .

[55]  J. Hyyppä,et al.  OPTIMIZATION OF THE SCANNING ANGLE FOR COUNTRYWIDE LASER SCANNING , 2005 .

[56]  S. Popescu,et al.  Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height , 2004 .

[57]  Scott N. Miller,et al.  DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects , 2010, Remote. Sens..

[58]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[59]  H. Akaike A new look at the statistical model identification , 1974 .

[60]  N. Coops,et al.  Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR , 2007, Trees.

[61]  Steen Magnussen,et al.  Recovering Tree Heights from Airborne Laser Scanner Data , 1999, Forest Science.

[62]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[63]  K. Lim,et al.  Examining the effects of sampling point densities on laser canopy height and density metrics , 2008 .

[64]  K. Ioki,et al.  Estimating stand volume in broad-leaved forest using discrete-return LiDAR: plot-based approach , 2009, Landscape and Ecological Engineering.

[65]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[66]  P. Sterzai,et al.  Radiometric correction in laser scanning , 2006 .

[67]  M. Hofton,et al.  LAND SURFACE CHARACTERIZATION USING LIDAR REMOTE SENSING , 2001 .

[68]  C. Tucker,et al.  Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999 , 2001, International journal of biometeorology.

[69]  John F. Weishampel,et al.  Multifractal analysis of canopy height measures in a longleaf pine savanna , 2000 .

[70]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[71]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[72]  Antero Kukko,et al.  Effect of incidence angle on laser scanner intensity and surface data. , 2008, Applied optics.

[73]  Patrick A. Glass,et al.  High- Versus Low-Density LiDAR in a Double-Sample Forest Inventory , 2004 .

[74]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[75]  D. Joanes,et al.  Comparing measures of sample skewness and kurtosis , 1998 .

[76]  Richard G. Oderwald,et al.  Forest Volume and Biomass Estimation Using Small-Footprint Lidar-Distributional Parameters on a Per-Segment Basis , 2006 .

[77]  H. Acquah Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of an asymmetric price relationship , 2010 .

[78]  Randolph H. Wynne,et al.  Estimating plot-level tree heights with lidar : local filtering with a canopy-height based variable window size , 2002 .

[79]  S. Popescu Estimating biomass of individual pine trees using airborne lidar , 2007 .

[80]  J. Holmgren,et al.  Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning , 2003, Forest Science.

[81]  C. Tucker,et al.  Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999 , 2001 .

[82]  Richard Anderson-Sprecher,et al.  Model Comparisons and R 2 , 1994 .

[83]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[84]  Benjamin M. Bolker,et al.  Ecological Models and Data in R , 2008 .