Effect of sodium during the aerosol transport and filtering in inductively coupled plasma atomic emission spectrometry

[1]  J. Mermet,et al.  The effect of sodium on analyte ionic line intensities in inductively coupled plasma atomic emission spectrometry : influence of the operating conditions , 1997 .

[2]  E. Kolehmainen,et al.  Performic acid oxidation of exo-2-syn-7-bicyclo[2.2.1]hept-5-enediol. 1H and 13C NMR spectroscopic structure elucidation of the reaction products , 1996 .

[3]  J. Tyson,et al.  Performance evaluation of an axially viewed horizontal inductively coupled plasma for optical emission spectrometry , 1995 .

[4]  J. Mermet,et al.  Influence of the sample introduction system on acid effects in inductively coupled plasma atomic emission spectrometry , 1995 .

[5]  A. Canals,et al.  Fundamental studies on pneumatic generation and aerosol transport in atomic spectrometry : effect of mineral acids on emission intensity in inductively coupled plasma atomic emission spectrometry , 1995 .

[6]  Paul J. Galley,et al.  Easily ionizable element (EIE) interferences in inductively coupled plasma atomic emission spectrometry: II. Minimization of EIE effects by choice of observation volume , 1994 .

[7]  P. González-Díaz,et al.  Single and double IR laser multiphoton decomposition of trifluoromethylsilane , 1994 .

[8]  G. Hieftje,et al.  The effect of easily ionized elements on analyte emission efficiency in inductively coupled plasma spectrometry , 1994 .

[9]  C. L. Cruz,et al.  An exploration of the surfaces of some Pt/SiO2 catalysts using CO as an infrared spectroscopic probe , 1994 .

[10]  Paul J. Galley,et al.  Easily ionizable element interferences in inductively coupled plasma atomic emission spectroscopy—I: Effect on radial analyte emission patterns , 1993 .

[11]  J. Mermet,et al.  Simple experiments for the control, the evaluation and the diagnosis of inductively coupled plasma sequential systems , 1993 .

[12]  A. M. Ferguson,et al.  Local mode interpretation of the CH and CD stretching vibrational manifolds of isotopic ethylenes, C2H3D and C2HD3 , 1993 .

[13]  H. Jobic,et al.  Inelastic neutron scattering in the glassy and metastable phases of methoxy-benzylidene-butyl-aniline , 1992 .

[14]  J. Mermet Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics , 1991 .

[15]  J. Olesik,et al.  Easily and Noneasily Ionizable Element Matrix Effects in Inductively Coupled Plasma Optical Spectrometry , 1989 .

[16]  R. K. Skogerboe,et al.  Aerosol Ionic Redistribution: The Calcium-Phosphorus Solute Vaporization Effect Revisited , 1986 .

[17]  G. Hieftje,et al.  Comparison of the helium/oxygen/acetylene and air/acetylene flames as atom sources for continuum-source atomic fluorescence spectrometry , 1985 .

[18]  G. Hieftje,et al.  Analytical characteristics of a low-flow, low-power inductively coupled plasma , 1985 .

[19]  R. Browner,et al.  Reply to exchange of comments on the measurement of aerosol transport efficiencies in atomic spectrometry , 1983 .

[20]  L. Galan,et al.  Exchange of comments on the measurement of aerosol transport efficiencies in atomic spectrometry , 1983 .

[21]  D. A. Yates,et al.  Spatial profiles of interelement effects in the inductively coupled plasma , 1982 .

[22]  J. Roederer,et al.  Spatial Distribution of Interference Effects in ICP Emission Analysis , 1982 .

[23]  R. Browner,et al.  Measurement of aerosol transport efficiency in atomic spectrometry , 1982 .

[24]  J. Borowiec,et al.  Interference effects from aerosol ionic redistribution in analytical atomic spectrometry , 1980 .

[25]  D. J. Kalnicky,et al.  Excitation Temperatures and Electron Number Densities Experienced by Analyte Species in Inductively Coupled Plasmas with and without the Presence of an Easily Ionized Element , 1977 .

[26]  J. Mermet,et al.  Étude spectrometrique d'un plasma induit par haute fréquence : Différents types d'effets interéléments observés , 1976 .

[27]  P. Boumans,et al.  Studies of a radio frequency inductively coupled argon plasma for optical emission spectrometry—III. Interference effects under compromise conditions for simultaneous multi-element analysis☆ , 1976 .

[28]  J. Robin,et al.  Étude des interférences dans un plasma induit par haute fréquence , 1975 .

[29]  O. H. Ellestad,et al.  The vibrational spectra of pentamethylene sulfide and selenide , 1975 .

[30]  G. F. Larson,et al.  Inductively coupled plasma-optical emission analytical spectrometry. Interelement effects , 1975 .

[31]  A. Canals,et al.  Acid effects in inductively coupled plasma atomic emission spectrometry with different nebulizers operated at very low sample consumption rates , 1998 .

[32]  I. Holclajtner-Antunović,et al.  Study of the matrix effect of easily and non-easily ionizable elements in inductively coupled argon plasma. Part 2. Equilibrium plasma composition , 1993 .

[33]  I. Holclajtner-Antunović,et al.  Study of the matrix effect of easily and non-easily ionizable elements in an inductively coupled argon plasma. Part 1. Spectroscopic diagnostics , 1993 .

[34]  G. Horlick,et al.  Deviation of the level populations of iron atoms and ions from the boltzmann distribution in an inductively coupled plasma. Part 2. Effect of an easily ionizable element , 1992 .

[35]  X. Jian,et al.  Matrix effects of easily ionized elements on the spatial distribution of electron number densities in an inductively coupled plasma using an optical fibre probe and a photodiode array spectrometer , 1992 .

[36]  I. Lakatos,et al.  Sample introduction and atomization of volatile alkyllead compounds in flame atomic absorption spectrometry , 1992 .

[37]  R. Browner,et al.  Comparison of desolvation effects with aqueous and organic (carbon tetrachloride) sample introduction for inductively coupled plasma atomic emission spectrometry , 1990 .

[38]  B. Budic,et al.  Matrix effects from magnesium and lithium in inductively coupled plasma atomic emission spectrometry , 1989 .

[39]  B. Sharp Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry. A review. Part 2. Spray chambers , 1988 .

[40]  G. D. Rayson,et al.  A steady-state approach to evaluation of proposed excitation mechanisms in the analytical ICP , 1986 .

[41]  J. Willis,et al.  Atomization problems in atomic absorption spectroscopy—IV: Impact devices, spray chambers and interferences , 1985 .

[42]  G. Hieftje,et al.  Interferences in a low-flow, low-power inductively coupled plasma. Technical report , 1985 .

[43]  C. Monnig,et al.  The role of electrons in the emission enhancement by easily ionized elements low in the inductively coupled plasma , 1985 .

[44]  W. H. Gunter,et al.  Some aspects of matrix interference caused by elements of low ionization potential in inductively coupled plasma atomic emission spectromctry , 1982 .

[45]  M. Blades,et al.  Interference from easily ionizable element matrices in inductively coupled plasma emission spectrometry—a spatial study , 1981 .

[46]  D. A. Yates,et al.  Use of spatial emission profiles and a nomenclature system as aids in interpreting matrix effects in the low-power argon inductively coupled plasma , 1981 .

[47]  M. Blades,et al.  The vertical spatial characteristics of analyte emission in the inductively coupled plasma , 1981 .

[48]  H. Kawaguchi,et al.  Effects of matrix on spatial profiles of emission from an inductively coupled plasma , 1980 .

[49]  M. Cresser,et al.  A method for investigating size distributions of aqueous droplets in the range 0.5–10 μm produced by pneumatic nebulizers , 1980 .

[50]  D. Gruen,et al.  Infrared spectra of matrix isolated and solid ethylene. Formation of ethylene dimers , 1979 .

[51]  K. Laqua,et al.  Some aspects of matrix effects caused by sodiumtetraborate in the analysis of rare earth minerals with the aid of inductively coupled plasma atomic emission spectroscopy , 1979 .

[52]  D. A. Edwards,et al.  Low-frequency vibrational spectra of some triphenylphosphine complexes of copper(I) and silver(I) , 1978 .

[53]  G. R. Kornblum,et al.  A study of the interference of cesium and phosphate in the low power inductively coupled radiofrequency argon plasma using spatially resolved emission and absorption measurements , 1977 .

[54]  Kim F. Wong,et al.  On the use of the modified Benesi—Hildebrand equation to process NMR hydrogen bonding data , 1976 .