Recent progress of crystal growth modeling and growth control

With the rapid growth of electronic and optoelectronic industry, the demand for crystal materials increased dramatically for the past two decades. The requirement for better, cheaper, and larger single crystals has driven extensive research and development in crystal growth. To understand the interplay of associated transport processes and phase transformation, as well as to provide a design basis, crystal growth modeling is becoming more important in both fundamentals and practice. In this article, we review some recent progress of numerical modeling in crystal growth through three subjects: (1) hot-zone design, (2) active growth control, and (3) morphological simulation. Examples are given through our research results in recent years. For better illustration and process understanding some visualization results using transparent materials are given. The needs and the challenges ahead for crystal growth modeling are also discussed.

[1]  D. E. Bornside,et al.  Toward an integrated analysis of czochralski growth , 1989 .

[2]  C. Lan Effects of ampoule rotation on flows and dopant segregation in vertical Bridgman crystal growth , 1999 .

[3]  C. Hsu,et al.  Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  François Dupret,et al.  Dynamic global simulation of the Czochralski process. I. Principles of the method , 1997 .

[5]  Talid Sinno,et al.  Defect engineering of Czochralski single-crystal silicon , 2000 .

[6]  Georg Müller,et al.  Development of a new powerful computer code CrysVUN++ especially designed for fast simulation of bulk crystal growth processes , 1999 .

[7]  Robert A. Brown,et al.  Point Defect Dynamics and the Oxidation‐Induced Stacking‐Fault Ring in Czochralski‐Grown Silicon Crystals , 1998 .

[8]  G. Amberg,et al.  Dendritic growth of randomly oriented nuclei in a shear flow , 2000 .

[9]  Georg Müller,et al.  Experimental analysis and modeling of melt growth processes , 2002 .

[10]  Toshio Suzuki,et al.  Phase-field model for binary alloys. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Michael Metzger,et al.  Optimal control of crystal growth processes , 2001 .

[12]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[13]  D. E. Bornside,et al.  Finite element/Newton method for the analysis of Czochralski crystal growth with diffuse‐grey radiative heat transfer , 1990 .

[14]  C. Lan,et al.  Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals , 2001 .

[15]  James A. Warren,et al.  Simulation of the cell to plane front transition during directional solidification at high velocity , 1999 .

[16]  A. Chait,et al.  Magnetically damped convection and segregation in Bridgman growth of PbSnTe , 1997 .

[17]  T. Fühner,et al.  Use of genetic algorithms for the development and optimization of crystal growth processes , 2004 .

[18]  G. Gerbeth,et al.  Vertical gradient freeze growth of GaAs with a rotating magnetic field , 2002 .

[19]  E. Schulz-dubois,et al.  Flux growth of large crystals by accelerated crucible-rotation technique , 1971 .

[20]  Robert A. Brown,et al.  Theory of transport processes in single crystal growth from the melt , 1988 .

[21]  Martin E. Glicksman,et al.  Equiaxed dendrite growth in alloys at small supercooling , 1987 .

[22]  V. Voronkov,et al.  Intrinsic point defects and impurities in silicon crystal growth , 2002 .

[23]  J. Derby,et al.  The role of internal radiation and melt convection in Czochralski oxide growth : deep interfaces, interface inversion, and spiraling , 1993 .

[24]  M. Foster The effect of rotation on vertical Bridgman growth at large Rayleigh number , 2000, Journal of Fluid Mechanics.

[25]  M. Naraghi,et al.  A Volume Radiation Heat Transfer Model for Czochralski Crystal Growth Processes , 2000, Heat Transfer: Volume 3.

[26]  Gustav Amberg,et al.  Phase-field simulations of non-isothermal binary alloy solidification , 2001 .

[27]  Jeffrey J. Derby,et al.  Finite-element methods for analysis of the dynamics and control of Czochralski crystal growth , 1987 .

[28]  Vishwanath Prasad,et al.  Local and Global Simulations of Bridgman and Liquid-Encapsulated Czochralski Crystal Growth , 1998 .

[29]  Jeffrey J. Derby,et al.  On the quasi-steady-state assumption in modeling Czochralski crystal growth , 1988 .

[30]  Makoto Kuramoto,et al.  Growth of silicon crystal with a diameter of 400 mm and weight of 400 kg , 2001 .

[31]  D. E. Bornside,et al.  The Effects of Gas‐Phase Convection on Carbon Contamination of Czochralski‐Grown Silicon , 1995 .

[32]  W. Hsu,et al.  On the hot-zone design of Czochralski silicon growth for photovoltaic applications , 2004 .

[33]  D. Hurle Charged native point defects in GaAs and other III–V compounds , 2002 .

[34]  W. Ammon,et al.  Influence of boron concentration on the oxidation-induced stacking fault ring in Czochralski silicon crystals , 1997 .

[35]  A. Karma Phase-field formulation for quantitative modeling of alloy solidification. , 2001, Physical review letters.

[36]  J. Friedrich,et al.  Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si Czochralski melts under the influence of different magnetic fields , 2001 .

[37]  T. Y. Wang,et al.  Interface control mechanisms in horizontal zone-melting with slow rotation , 2000 .

[38]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[39]  R. Trivedi,et al.  Solidification microstructures: recent developments, future directions , 2000 .

[40]  Jeffrey J. Derby,et al.  Radiative heat exchange in Czochralski crystal growth , 1987 .

[41]  A. Mühlbauer,et al.  Numerical model of turbulent CZ melt flow in the presence of AC and CUSP magnetic fields and its verification in a laboratory facility , 2001 .

[42]  Chung-Wen Lan,et al.  Efficient adaptive phase field simulation of directional solidification of a binary alloy , 2003 .

[43]  C. Lan,et al.  Three-dimensional analysis of heat flow, segregation, and interface shape of gradient-freeze crystal growth in a centrifuge , 2001 .

[44]  Warren,et al.  Prediction of dendritic spacings in a directional-solidification experiment. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  N. Goldenfeld,et al.  Phase field model for three-dimensional dendritic growth with fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[47]  Y. F. Lee,et al.  Effects of internal radiation on heat flow and facet formation in Bridgman growth of YAG crystals , 2003 .

[48]  Kessler,et al.  Velocity selection in dendritic growth. , 1986, Physical review. B, Condensed matter.

[49]  T. Tsukada,et al.  Global analysis of heat transfer in CZ crystal growth of oxide , 1994 .

[50]  Wouter-Jan Rappel,et al.  Cellular multiplets in directional solidification , 1997 .

[51]  Prodromos Daoutidis,et al.  Improved radial segregation via the destabilizing vertical Bridgman configuration , 2004 .

[52]  Takao Tsukada,et al.  Global analysis of a small Czochralski furnace with rotating crystal and crucible , 2003 .

[53]  G. Müller,et al.  Study of oxygen transport in Czochralski growth of silicon , 1999 .

[54]  C. Lan,et al.  Effects of ampoule rotation on vertical zone-melting crystal growth: steady rotation versus accelerated crucible rotation technique (ACRT) , 1999 .

[55]  C. Shih,et al.  Efficient phase field simulation of a binary dendritic growth in a forced flow. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  G. Müller,et al.  3D numerical simulation and experimental investigations of melt flow in an Si Czochralski melt under the influence of a cusp-magnetic field , 2002 .

[57]  Wei Shyy,et al.  Multiphase Dynamics in Arbitrary Geometries on Fixed Cartesian Grids , 1997 .

[58]  Chih-Jen Shih,et al.  Phase field simulation of non-isothermal free dendritic growth of a binary alloy in a forced flow , 2004 .

[59]  Takao Tsukada,et al.  Effect of internal radiative heat transfer on transition of flow modes in CZ oxide melt , 2000 .

[60]  Th. Kaiser,et al.  Floating zone growth of silicon in magnetic fields:: IV. Rotating magnetic fields , 2001 .

[61]  C. Lan Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror furnace , 1996 .

[62]  Celal Batur,et al.  Active control of interface shape during the crystal growth of lead bromide , 1999 .

[63]  W. Tiller,et al.  The redistribution of solute atoms during the solidification of metals , 1953 .

[64]  P. Dold,et al.  ROTATING MAGNETIC FIELDS: FLUID FLOW AND CRYSTAL GROWTH APPLICATIONS , 1999 .

[65]  J. Friedrich,et al.  Challenges in modeling of bulk crystal growth , 2004 .

[66]  Jeffrey J. Derby,et al.  Three-dimensional melt flows in Czochralski oxide growth: high-resolution, massively parallel, finite element computations , 1995 .

[67]  V. Uspenskii,et al.  High frequency vibration and natural convection in Bridgman-scheme crystal growth , 1994 .

[68]  C. Lan Effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation , 2001 .

[69]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  C. Hsu,et al.  Efficient adaptive phase field simulation of dendritic growth in a forced flow at low supercooling , 2002 .

[71]  C. Lan,et al.  Multigrid Methods for Incompressible Heat Flow Problems with an Unknown Interface , 1999 .

[72]  Frederick M. Carlson,et al.  Finite element analysis of the control of interface shape in Bridgman crystal growth , 1983 .

[73]  K. Kakimoto,et al.  Direct observation by X-ray radiography of convection of molten silicon in the Czochralski growth method , 1988 .

[74]  Arun Pandy,et al.  Three-dimensional imperfections in a model vertical Bridgman growth system for cadmium zinc telluride , 2004 .

[75]  Andrew Yeckel,et al.  Effect of steady crucible rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride , 1999 .

[76]  D. Hurle A COMPREHENSIVE THERMODYNAMIC ANALYSIS OF NATIVE POINT DEFECT AND DOPANT SOLUBILITIES IN GALLIUM ARSENIDE , 1999 .

[77]  M. C. Liang,et al.  A visualization and computational study of horizontal Bridgman crystal growth , 2000 .

[78]  K. M. Kim Suppression of Thermal Convection by Transverse Magnetic Field , 1982 .

[79]  Chung-Wen Lan,et al.  Effects of axial vibration on vertical zone-melting processing , 2000 .

[80]  Georg Müller,et al.  Control of thermal conditions during crystal growth by inverse modeling , 2000 .

[81]  Noriyuki Miyazaki,et al.  Development of a thermal stress analysis system for anisotropic single crystal growth , 2002 .

[82]  C. W. Lan,et al.  An Adaptive Finite Volume Method for Incompressible Heat Flow Problems in Solidification , 2002 .

[83]  H. Rodot,et al.  Cristaux de rellurure de plomb élaborés en centrifugeuse , 1986 .

[84]  R. Prim,et al.  The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical , 1953 .

[85]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[86]  Chung-Wen Lan,et al.  Three-dimensional analysis of flow and segregation in vertical Bridgman crystal growth under axial and transversal magnetic fields , 2003 .

[87]  Y. Khine,et al.  Thermoelectric magnetohydrodynamic flow during crystal growth with a moderate or weak magnetic field , 2000 .

[88]  Y. W. Yang,et al.  Reversing radial segregation and suppressing morphological instability during vertical Bridgman crystal growth by rotation , 2002 .

[89]  G. Caginalp,et al.  Phase-field and sharp-interface alloy models. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[90]  C. Lan,et al.  Morphological instability due to double diffusive convection in directional solidification: the pit formation , 2000 .

[91]  Arvind Srinivasan,et al.  Control of crystal growth in bridgman furnace , 1995 .

[92]  C. Lan,et al.  Three-dimensional thermocapillary and buoyancy convections and interface shape in horizontal Bridgman crystal growth , 1997 .

[93]  Celal Batur,et al.  Performance of Bridgman furnace operating under projective control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[94]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[95]  Robert A. Brown,et al.  Convection and segregation in directional solidification of dilute and non-dilute binary alloys: Effects of ampoule and furnace design , 1987 .

[96]  Dantzig,et al.  Computation of dendritic microstructures using a level set method , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[97]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[98]  Talid Sinno,et al.  Modeling Microdefect Formation in Czochralski Silicon , 1999 .

[99]  M. Kuramoto,et al.  Global simulation of the CZ silicon crystal growth up to 400 mm in diameter , 2001 .

[100]  Georg Müller,et al.  Thermal simulation of the Czochralski silicon growth process by three different models and comparison with experimental results , 1997 .

[101]  Merton C. Flemings,et al.  Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field , 1966 .

[102]  D. Larson,et al.  Transient simulation of facet growth during directional solidification , 2004 .

[103]  Marcel Crochet,et al.  Global modelling of heat transfer in crystal growth furnaces , 1990 .

[104]  Y. Makarov,et al.  Analysis of magnetic field effect on 3D melt flow in CZ Si growth , 2003 .

[105]  Prodromos Daoutidis,et al.  Development of model-based control for Bridgman crystal growth , 2004 .

[106]  Toshio Suzuki,et al.  Recent advances in the phase-field model for solidification , 2001 .

[107]  K. Kakimoto Oxygen distribution in silicon melt under inhomogeneous transverse-magnetic fields , 2001 .

[108]  J. Derby,et al.  Heat transfer in vertical Bridgman growth of oxides - Effects of conduction, convection, and internal radiation , 1992 .

[109]  Boron retarded self-interstitial diffusion in Czochralski growth of silicon crystals and its role in oxidation-induced stacking-fault ring dynamics , 1999 .

[110]  M. Volz,et al.  A numerical investigation of the effect of thermoelectromagnetic convection (TEMC) on the Bridgman growth of Ge1−xSix , 1999 .

[111]  C. Lan,et al.  Simulation of boron effects on OISF-ring dynamics for Czochralski silicon growth: a comparative study , 2004 .

[112]  Jeffrey J. Derby,et al.  Finite Element Analysis of a Thermal‐Capillary Model for Liquid Encapsulated Czochralski Growth , 1985 .

[113]  Vishwanath Prasad,et al.  Mechanisms of thermo-solutal transport and segregation in high-pressure liquid-encapsulated Czochralski crystal growth , 1999 .

[114]  Simon Brandon,et al.  Facetting during directional growth of oxides from the melt: coupling between thermal fields, kinetics and melt/crystal interface shapes , 1999 .

[115]  Long-time scale morphological dynamics near the onset of instability during directional solidification of an alloy , 2004 .

[116]  C. Chian,et al.  Suppressing three-dimensional unsteady flows in vertical zone-melting by steady ampoule rotation , 2000 .

[117]  Chih-Jen Shih,et al.  Adaptive phase field simulation of non-isothermal free dendritic growth of a binary alloy , 2003 .

[118]  V. V. Voronkov,et al.  The mechanism of swirl defects formation in silicon , 1982 .

[119]  Y. W. Yang,et al.  Segregation and morphological instability due to double-diffusive convection in rotational directional solidification , 2002 .

[120]  R. Sekerka,et al.  Phase field modeling of shallow cells during directional solidification of a binary alloy , 2002 .

[121]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[122]  A. Muiznieks,et al.  Prediction of the growth interface shape in industrial 300 mm CZ Si crystal growth , 2004 .

[123]  Stephen H. Davis,et al.  Theory of Solidification , 2001 .

[124]  J. Friedrich,et al.  Experimental and theoretical analysis of convection and segregation in vertical Bridgman growth under high gravity on a centrifuge , 1996 .

[125]  Zhihong Wang,et al.  Engineering analysis of microdefect formation during silicon crystal growth , 2001 .

[126]  Wheeler,et al.  Phase-field model of solute trapping during solidification. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[127]  Robert A. Brown,et al.  BOUNDARY-CONFORMING MAPPING APPLIED TO COMPUTATIONS OF HIGHLY DEFORMED SOLIDIFICATION INTERFACES , 1992 .

[128]  Sofiane Meradji,et al.  Vibrational control of crystal growth from liquid phase , 1997 .

[129]  Bouissou,et al.  Effect of a forced flow on dendritic growth. , 1989, Physical review. A, General physics.

[130]  Y. Gel'fgat,et al.  Rotating magnetic fields as a means to control the hydrodynamics and heat transfer in single crystal growth processes , 1999 .

[131]  Robert A. Brown,et al.  Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth , 1988 .

[132]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[133]  C. Lan,et al.  Three-dimensional analysis of flow and segregation in vertical bridgman crystal growth under a transversal magnetic field with ampoule rotation , 2004 .

[134]  W. Arnold,et al.  Convection and segregation during vertical Bridgman growth with centrifugation , 1998 .

[135]  G. Müller,et al.  Numerical simulation of the LEC-growth of GaAs crystals with account of high-pressure gas convection , 1997 .

[136]  A. G. Abramov,et al.  Modeling analysis of unsteady three-dimensional turbulent melt flow during Czochralski growth of Si crystals , 2001 .

[137]  Takao Tsukada,et al.  Global analysis of heat transfer in Si CZ furnace with specular and diffuse surfaces , 1998 .

[138]  T. Tsukada,et al.  Effect of a Radiation Shield on Thermal Stress Field during Czochralski Crystal Growth of Silicon , 1990 .

[139]  P. Rudolph,et al.  Bulk growth of GaAs : An overview , 1999 .

[140]  T. Tsukada,et al.  Global simulation of a silicon Czochralski furnace , 2002 .

[141]  A. Karma,et al.  Phase-field simulations of dendritic crystal growth in a forced flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[142]  Yu.N. Makarov,et al.  Advances in the simulation of heat transfer and prediction of the melt-crystal interface shape in silicon CZ growth , 2004 .

[143]  H. H. Lee,et al.  Epitaxial Growth Rate of GaAs : Chloride Transport Process , 1985 .

[144]  Yu.N. Makarov,et al.  Gas flow effect on global heat transport and melt convection in Czochralski silicon growth , 2003 .

[145]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.