Computing Restricted Isometry Constants via Mixed-Integer Semidefinite Programming

One of the fundamental tasks in compressed sensing is finding the sparsest solution to an underdetermined system of linear equations. It is well known that although this problem is NP-hard, under certain conditions it can be solved by using a linear program which minimizes the 1-norm. The restricted isometry property has been one of the key conditions in this context. However, computing the best constants for this condition is itself NP-hard. In this paper we propose a mixed-integer semidefinite programming approach for computing these optimal constants. This also subsumes sparse principal component analysis. Computational results with this approach allow to evaluate earlier semidefinite relaxations and show that the quality that can be obtained in reasonable time is limited.

[1]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[2]  Makoto Yamashita,et al.  A high-performance software package for semidefinite programs: SDPA 7 , 2010 .

[3]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[4]  Alexandre d'Aspremont,et al.  Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..

[5]  Stefan Ulbrich,et al.  A framework for solving mixed-integer semidefinite programs , 2018, Optim. Methods Softw..

[6]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[7]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[8]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Marc E. Pfetsch,et al.  The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing , 2012, IEEE Transactions on Information Theory.

[11]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[12]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[13]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[14]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[15]  Shai Avidan,et al.  Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.

[16]  Sonja Mars,et al.  Mixed-Integer Semidefinite Programming with an Application to Truss Topology Design , 2013 .

[17]  S. Foucart A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .

[18]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[19]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[20]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[21]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[22]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[23]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[24]  G. Pataki Cone-LP ' s and Semidefinite Programs : Geometry and a Simplex-Type Method , 2022 .

[25]  Alexandre d'Aspremont,et al.  Approximation bounds for sparse principal component analysis , 2012, Math. Program..

[26]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[27]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[28]  Dirk A. Lorenz,et al.  Solving Basis Pursuit , 2015 .

[29]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.