A MIMO-OFDM Testbed for Wireless Local Area Networks

This paper describes the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We present the design methodology, including cross-validation of the Matlab, C++ and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system

[1]  Giuseppe Caire,et al.  A MIMO-OFDM Testbed for Wireless Local Area Networks , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[2]  Dirk T. M. Slock,et al.  Colocated antenna arrays: design desiderata for wireless communications , 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.

[3]  Giuseppe Caire,et al.  Impact of signal constellation expansion on achievable diversity in quasistatic multiple antenna channels , 2004, 2004 12th European Signal Processing Conference.

[4]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[5]  Karine Gosse,et al.  MTMR channel estimation and pilot design in the context of space-time block coded OFDM-based WLANs , 2002 .

[6]  Maxime Guillaud Full-rate full-diversity space-frequency coding for MIMO OFDM systems , 2002 .

[7]  Dirk T. M. Slock,et al.  Multi-stream coding for MIMO OFDM systems with space-time-frequency spreading , 2002, The 5th International Symposium on Wireless Personal Multimedia Communications.

[8]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[9]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[10]  Helmut Bölcskei,et al.  MIMO wireless channels: capacity and performance prediction , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[11]  P. Pajusco,et al.  Radio propagation in urban small cells environment at 2 GHz: experimental spatio-temporal characterization and spatial wideband channel model , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[12]  Giuseppe Caire,et al.  Power control and beamforming for systems with multiple transmit and receive antennas , 2002, IEEE Trans. Wirel. Commun..

[13]  Reinaldo A. Valenzuela,et al.  Keyholes, correlations, and capacities of multielement transmit and receive antennas , 2002, IEEE Trans. Wirel. Commun..

[14]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[15]  Vinko Erceg IEEE P802.11 Wireless LANs TGn Channel Models , 2004 .

[16]  Giuseppe Caire,et al.  Limiting performance of block-fading channels with multiple antennas , 2001, IEEE Trans. Inf. Theory.

[17]  Ari Hottinen,et al.  Minimal non-orthogonality rate 1 space-time block code for 3+ Tx antennas , 2000, 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications. ISSTA 2000. Proceedings (Cat. No.00TH8536).

[18]  D.T.M. Slock,et al.  Signal processing challenges for wireless communications , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..

[19]  Rodolphe Vauzelle,et al.  A 3D ray-tracing tool for broadband wireless systems , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[20]  Helmut Bölcskei,et al.  Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM , 2003, IEEE J. Sel. Areas Commun..

[21]  Reinaldo A. Valenzuela,et al.  V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel , 1998, 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167).