Mars Exploration Rover Navigation Camera in‐flight calibration

[1] The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m−2 nm−1 sr−1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies.

[1]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[2]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[3]  Raymond E. Arvidson,et al.  Mars Exploration Rover Pancam Photometric Data QUBs: Definition and Example Uses. , 2004 .

[4]  J. B. Pollack,et al.  Properties of dust in the martian atmosphere and its effect on temperature structure , 1978 .

[5]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[6]  R. J. Reid,et al.  Imager for Mars Pathfinder (IMP) image calibration , 1999 .

[7]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .

[8]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[9]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[10]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[11]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[12]  J. Pollack,et al.  Scattering by nonspherical particles of size comparable to wavelength - A new semi-empirical theory and its application to tropospheric aerosols , 1980 .

[13]  J. W. Hovenier,et al.  Interpretation of the polarization of Venus , 1974 .

[14]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[15]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[16]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[17]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[18]  Robert G. Deen,et al.  Seeing in three dimensions: correlation and triangulation of Mars Exploration Rover imagery , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[19]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[20]  L. Colina,et al.  The 0.12-2.5 micron Absolute Flux Distribution of the Sun for Comparison With Solar Analog Stars , 1996 .

[21]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[22]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[23]  Edward A. Guinness,et al.  The Martian Surface: Physical properties of the Martian surface from spectrophotometric observations , 2008 .

[24]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[25]  T. Ackerman,et al.  Algorithms for the calculation of scattering by stratified spheres. , 1981, Applied optics.

[26]  Steve B. Howell,et al.  Handbook of CCD Astronomy: Contents , 2006 .

[27]  A. Lacis,et al.  Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering , 2006 .

[28]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[29]  Randolph L. Kirk,et al.  New Topographic Products and Rover Localization Results for the 2003 Mars Exploration Rover Mission , 2006 .

[30]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[31]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[32]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[33]  J. Maki,et al.  The color of Mars: Spectrophotometric measurements at the Pathfinder landing site , 1999 .

[34]  R. Todd Clancy,et al.  Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Pathfinder mission: Seasonal and interannual variations , 1999 .

[35]  Jeffrey R. Johnson,et al.  Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets , 2007 .

[36]  Bruce Hapke,et al.  Bidirectional Reflectance Spectroscopy: 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering , 2002 .

[37]  R. V. Morris,et al.  Spectrogoniometric Measurements and Models of Lunar Analog Soils , 2007 .

[38]  Ralph A. Kahn,et al.  Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data , 1977 .

[39]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[40]  J. N. Maki,et al.  Photometry of the Martian Surface Using Data from the Navigation Cameras on the Mars Exploration Rovers Spirit and Opportunity , 2006 .

[41]  Nicolas Thomas,et al.  Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data , 1999 .