Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.

Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.

[1]  Debashish Bhattacharya,et al.  Photosynthetic eukaryotes unite: endosymbiosis connects the dots. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[2]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[3]  M. Soares,et al.  Migration of the Plastid Genome to the Nucleus in a Peridinin Dinoflagellate , 2004, Current Biology.

[4]  N. Patron,et al.  Gene Replacement of Fructose-1,6-Bisphosphate Aldolase Supports the Hypothesis of a Single Photosynthetic Ancestor of Chromalveolates , 2004, Eukaryotic Cell.

[5]  M. King,et al.  A Green Algal Apicoplast Ancestor , 2002, Science.

[6]  D. Leister,et al.  An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. , 2004, Gene.

[7]  D. Anderson,et al.  Dinoflagellates: a remarkable evolutionary experiment. , 2004, American journal of botany.

[8]  M. Kawachi,et al.  The haptonema as a food-capturing device: observations on Chrysochromulina hirta (Prymnesiophyceae) , 1991 .

[9]  W. Doolittle You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. , 1998, Trends in genetics : TIG.

[10]  W. Martin,et al.  Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Sabine Cornelsen,et al.  Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. E. Lee,et al.  Ultrastructural Evidence for Bacterial Incorporation and Myxotrophy in the Photosynthetic Cryptomonad Chroomonas Pochmanni Huber-Pestalozzi (Chyptomonadida) , 1990 .

[13]  D. Bhattacharya,et al.  Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.

[14]  John Parkinson,et al.  Expressed sequence tags: analysis and annotation. , 2004, Methods in molecular biology.

[15]  Paul G. Falkowski,et al.  THE MESOZOIC RADIATION OF EUKARYOTIC ALGAE: THE PORTABLE PLASTID HYPOTHESIS 1 , 2003 .

[16]  P. Keeling,et al.  Lateral gene transfer and the complex distribution of insertions in eukaryotic enolase. , 2004, Gene.

[17]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[18]  W. Plaxton,et al.  THE ORGANIZATION AND REGULATION OF PLANT GLYCOLYSIS. , 1996, Annual review of plant physiology and plant molecular biology.

[19]  F. Delsuc,et al.  The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[21]  S. Tabata,et al.  COMPARISON OF RNA EXPRESSION PROFILES BETWEEN THE TWO GENERATIONS OF PORPHYRA YEZOENSIS (RHODOPHYTA), BASED ON EXPRESSED SEQUENCE TAG FREQUENCY ANALYSIS , 2003 .

[22]  S Blair Hedges,et al.  BMC Evolutionary Biology BioMed Central , 2003 .

[23]  Tadashi Maruyama,et al.  Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. , 2004, Protist.

[24]  E. Cahoon,et al.  Characterization of Tocopherol Cyclases from Higher Plants and Cyanobacteria. Evolutionary Implications for Tocopherol Synthesis and Function1 , 2003, Plant Physiology.

[25]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[26]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[27]  Nicolas Carels,et al.  Genome Properties of the Diatom Phaeodactylum tricornutum 212 , 2002, Plant Physiology.

[28]  N. Patron,et al.  A tertiary plastid uses genes from two endosymbionts. , 2006, Journal of molecular biology.

[29]  M. Ishikawa,et al.  Mass identification of chloroplast proteins of endosymbiont origin by phylogenetic profiling based on organism-optimized homologous protein groups. , 2005, Genome informatics. International Conference on Genome Informatics.

[30]  D. Bhattacharya,et al.  THE PHYLOGENY OF PLASTIDS: A REVIEW BASED ON COMPARISONS OF SMALL‐SUBUNIT RIBOSOMAL RNA CODING REGIONS , 1995 .

[31]  Hidemi Watanabe,et al.  A genomic timescale for the origin of eukaryotes , 2001, BMC Evolutionary Biology.

[32]  M. Hasegawa,et al.  Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.

[33]  R. Waller,et al.  Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. , 2006, Molecular biology and evolution.

[34]  Robert Eugene Blankenship Molecular evidence for the evolution of photosynthesis. , 2001, Trends in plant science.

[35]  E. Gantt,et al.  Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[37]  B. Leadbeater,et al.  The Haptophyte algae , 1994 .

[38]  B. Green,et al.  Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Brinkmann,et al.  A “Green” Phosphoribulokinase in Complex Algae with Red Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates , 2006, Journal of Molecular Evolution.

[40]  P. Michels,et al.  Evolution of glycolysis. , 1993, Progress in biophysics and molecular biology.

[41]  E. Gross Plastocyanin: Structure and function , 1993, Photosynthesis Research.

[42]  S. Gough,et al.  Biosynthesis of Δ-aminolevulinate in greening barley leaves: Glutamate 1-semialdehyde aminotransferase , 1978 .

[43]  A. Arakaki,et al.  Plant‐type ferredoxin‐NADP+ reductases: a basal structural framework and a multiplicity of functions , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[44]  A. Weber,et al.  EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts , 2004, Plant Molecular Biology.

[45]  Michele Barbier,et al.  Gene Expression in Florida Red Tide Dinoflagellate Karenia brevis: Analysis of an Expressed Sequence Tag Library and Development of DNA Microarray , 2005, Marine Biotechnology.

[46]  T. Cavalier-smith,et al.  Dinoflagellate Nuclear SSU rRNA Phylogeny Suggests Multiple Plastid Losses and Replacements , 2001, Journal of Molecular Evolution.

[47]  M. Gray Rickettsia, typhus and the mitochondrial connection , 1998, Nature.

[48]  P. Keeling,et al.  Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[50]  Debashish Bhattacharya,et al.  Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. , 2006, Molecular biology and evolution.

[51]  G. Sandmann,et al.  Distribution of plastocyanin and soluble plastidic cytochrome c in various classes of algae , 2004, Archives of Microbiology.

[52]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[53]  J. Boothroyd,et al.  Plasmodium falciparum AMA1 Binds a Rhoptry Neck Protein Homologous to TgRON4, a Component of the Moving Junction in Toxoplasma gondii , 2006, Eukaryotic Cell.

[54]  J. Palmer,et al.  Rubisco surprises in dinoflagellates. , 1996, The Plant cell.

[55]  S. Prusiner,et al.  Unusual topogenic sequence directs prion protein biogenesis. , 1990, Science.

[56]  D. Krogmann,et al.  Electron donors to P700 in cyanobacteria and algae: An instance of unusual genetic variability , 1984 .

[57]  D. Anderson,et al.  Characterization of ferredoxin and flavodoxin as markers of iron limitation in marine phytoplankton , 1999 .

[58]  John Quackenbush,et al.  TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets , 2003, Bioinform..

[59]  R. Herrmann,et al.  Identification and Characterization of SppA, a Novel Light-inducible Chloroplast Protease Complex Associated with Thylakoid Membranes* , 2001, The Journal of Biological Chemistry.

[60]  A. Weber,et al.  Single, Ancient Origin of a Plastid Metabolite Translocator Family in Plantae from an Endomembrane-Derived Ancestor , 2006, Eukaryotic Cell.

[61]  Kentaro Inoue,et al.  Evolution of the general protein import pathway of plastids (Review) , 2005, Molecular membrane biology.

[62]  A. Arakaki,et al.  Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. , 2004, Biochimica et biophysica acta.

[63]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[64]  T. Cavalier-smith Only six kingdoms of life , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  P. Wood Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-552 in Chlamydomonas. , 1978, European journal of biochemistry.

[66]  M. Hagemann,et al.  Detection of the isiA Gene across Cyanobacterial Strains: Potential for Probing Iron Deficiency , 2001, Applied and Environmental Microbiology.

[67]  A. Serrano,et al.  Enzymatic systems of inorganic pyrophosphate bioenergetics in photosynthetic and heterotrophic protists: remnants or metabolic cornerstones? , 2001, International microbiology : the official journal of the Spanish Society for Microbiology.

[68]  M. Fryer EVIDENCE FOR THE PHOTOPROTECTIVE EFFECTS OF VITAMIN E , 1993, Photochemistry and photobiology.

[69]  P. Keeling,et al.  Nucleus-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Indicates a Single Origin for Chromalveolate Plastids , 2003 .

[70]  Olivier Gascuel,et al.  PHYML Online: A Web Server for Fast Maximum Likelihood-Based Phylogenetic Inference , 2018 .

[71]  W. Martin,et al.  The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis , 1997, Current Genetics.