The global attractor of the viscous Fornberg-Whitham equation

Abstract This paper aims to present a proof of the existence of the attractor for the one-dimensional viscous Fornberg–Whitham equation. In this paper, the global existence of solution to the viscous Fornberg–Whitham equation in L 2 under the periodic boundary conditions is studied. By using the time estimate of the Fornberg–Whitham equation, we get the compact and bounded absorbing set and the existence of the global attractor for the viscous Fornberg–Whitham equation.

[1]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[2]  D. Sattinger,et al.  Multi-peakons and a theorem of Stieltjes , 1999, solv-int/9903011.

[3]  Adrian Constantin,et al.  Stability of the Camassa-Holm solitons , 2002, J. Nonlinear Sci..

[4]  Giuseppe Maria Coclite,et al.  Numerical schemes for computing discontinuous solutions of the Degasperis–Procesi equation , 2007 .

[5]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[6]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[7]  Lixin Tian,et al.  On the Well-Posedness Problem and the Scattering Problem for the Dullin-Gottwald-Holm Equation , 2005 .

[8]  Jonatan Lenells,et al.  Traveling wave solutions of the Degasperis-Procesi equation , 2005 .

[9]  H. Dai Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod , 1998 .

[10]  L. Tian,et al.  Singular solitons of generalized Camassa-Holm models , 2007 .

[11]  Jiangbo Zhou Global Existence of Solution to an Initial Boundary Value Problem for the Degasperis-Procesi Equation , 2007 .

[12]  L. Tian,et al.  The bifurcation and peakon for Degasperis–Procesi equation , 2006 .

[13]  L. Tian,et al.  The attractor on viscosity Degasperis–Procesi equation , 2008 .

[14]  W. Strauss,et al.  Stability of a class of solitary waves in compressible elastic rods , 2000 .

[15]  L. Tian,et al.  The global attractor of the viscous damped forced Ostrovsky equation , 2009 .

[16]  Adrian Constantin,et al.  A shallow water equation on the circle , 1999 .

[17]  A. Constantin On the Inverse Spectral Problem for the Camassa–Holm Equation , 1998 .

[18]  Lixin Tian,et al.  The Attractor on Viscosity Peakon b-Family of Equations , 2007 .

[19]  Lixin Tian,et al.  Optimal control of the viscous Camassa–Holm equation , 2009 .

[20]  Adrian Constantin,et al.  The trajectories of particles in Stokes waves , 2006 .

[21]  Lixin Tian,et al.  Solitons, peakons and periodic cusp wave solutions for the Fornberg-Whitham equation , 2010 .

[22]  Darryl D. Holm,et al.  Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves , 2003 .

[23]  Giuseppe Gaeta,et al.  Symmetry and perturbation theory , 2005 .

[24]  Jiangbo Zhou A Mixed Initial Boundary Value Problem for the Degasperis-Procesi Equation on a Bounded Interval , 2008 .

[25]  L. Tian,et al.  Optimal control of the viscous Degasperis-Procesi equation , 2007 .

[26]  L. Tian,et al.  The attractor for the two-dimensional weakly damped KdV equation in belt field , 2008 .

[27]  Almost periodic solution of one dimensional viscous Camassa-Holm equation , 2007 .

[28]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[29]  J. Lenells Traveling wave solutions of the Camassa-Holm equation , 2005 .

[30]  S. Qian Nonclassical Symmetry Reductions for Coupled KdV Equations , 2006 .

[31]  O. Goubet,et al.  Asymptotic Smoothing and the Global Attractor of a Weakly Damped KdV Equation on the Real Line , 2002 .

[32]  Hans Lundmark,et al.  Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation , 2007, J. Nonlinear Sci..

[33]  L. Tian,et al.  New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa–Holm equations , 2004 .

[34]  L. Tian,et al.  Blow-up of solution of an initial boundary value problem for a generalized Camassa–Holm equation , 2008, 0907.5506.

[35]  A. B. D. Monvel,et al.  Riemann-Hilbert approach for the Camassa-Holm equation on the line , 2006 .

[36]  L. Tian,et al.  The Study of Solution of Dissipative Camassa-Holm Equation on Total Space , 2006 .

[37]  L. Tian,et al.  Blow-up Phenomena for the Periodic Degasperis-Procesi Equation with Strong Dispersive Term , 2006 .

[38]  Lixin Tian,et al.  The Global Attractor for the Viscous Weakly Damped Forced Korteweg-de Vries Equations in H 1 (R) , 2008 .

[39]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[40]  A. Constantin Existence of permanent and breaking waves for a shallow water equation: a geometric approach , 2000 .

[41]  A. Constantin On the scattering problem for the Camassa-Holm equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  W. Strauss,et al.  Stability of peakons , 2000 .

[43]  A. Bressan,et al.  GLOBAL DISSIPATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION , 2007 .

[44]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[45]  J. Escher,et al.  Global existence and blow-up for a shallow water equation , 1998 .

[46]  L. Tian,et al.  On the Well-posedness Problem for the Generalized Degasperis-Procesi Equation , 2006 .

[47]  V. Gerdjikov,et al.  Inverse scattering transform for the Camassa–Holm equation , 2006, Inverse Problems.

[48]  Lixin Tian,et al.  A type of bounded traveling wave solutions for the Fornberg-Whitham equation , 2008, 0907.5326.

[49]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[50]  Joachim Escher,et al.  Particle trajectories in solitary water waves , 2007 .

[51]  L. Tian,et al.  New peaked solitary wave solutions of the generalized Camassa-Holm equation , 2004 .

[52]  R. Johnson,et al.  On solutions of the Camassa-Holm equation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  A. Bressan,et al.  Global Conservative Solutions of the Camassa–Holm Equation , 2007 .