The Hera Radio Science Experiment at Didymos

[1]  P. Pravec,et al.  Dimorphos Orbit Determination from Mutual Events Photometry , 2024, The Planetary Science Journal.

[2]  G. Cremonese,et al.  Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos , 2023, Nature.

[3]  P. Cappuccio,et al.  Tropospheric Delay Calibration System Performance During the First Two BepiColombo Solar Conjunctions , 2023, Radio Science.

[4]  P. Tortora,et al.  Design and Analysis of the Cis-Lunar Navigation for the ArgoMoon CubeSat Mission , 2022, Aerospace.

[5]  M. Zuber,et al.  The Psyche Gravity Investigation , 2022, Space Science Reviews.

[6]  D. Scheeres,et al.  Energy dissipation in synchronous binary asteroids , 2022, Icarus.

[7]  P. Tanga,et al.  Predictions for the Dynamical States of the Didymos System before and after the Planned DART Impact , 2022, The Planetary Science Journal.

[8]  A. Fitzsimmons,et al.  The ESA Hera Mission: Detailed Characterization of the DART Impact Outcome and of the Binary Asteroid (65803) Didymos , 2022, The Planetary Science Journal.

[9]  F. Topputo,et al.  Trajectory Options for Hera’s Milani CubeSat Around (65803) Didymos , 2021, The Journal of the Astronautical Sciences.

[10]  D. Britt,et al.  Lucy Mission to the Trojan Asteroids: Science Goals , 2021, The Planetary Science Journal.

[11]  Ryan S. Park,et al.  Gravity Field of Ganymede After the Juno Extended Mission , 2021, Geophysical Research Letters.

[12]  Boulder,et al.  The Excited Spin State of Dimorphos Resulting from the DART Impact , 2021, 2107.07996.

[13]  P. Tortora,et al.  Performance Characterization of ESA's Tropospheric Delay Calibration System for Advanced Radio Science Experiments , 2021, Radio Science.

[14]  K. Oudrhiri,et al.  Analysis of NASA’s DSN Venus Express radio occultation data for year 2014 , 2021, Advances in Space Research.

[15]  F. Topputo,et al.  Preliminary mission profile of Hera’s Milani CubeSat , 2021, Advances in Space Research.

[16]  F. Nimmo,et al.  Updated Europa gravity field and interior structure from a reanalysis of Galileo tracking data , 2020 .

[17]  Fabio Crameri,et al.  The misuse of colour in science communication , 2020, Nature Communications.

[18]  P. Michel,et al.  A benchmarking and sensitivity study of the full two-body gravitational dynamics of the DART mission target, binary asteroid 65803 Didymos , 2020 .

[19]  R. A. Jacobson,et al.  Trajectory Estimation for Particles Observed in the Vicinity of (101955) Bennu , 2020, Journal of Geophysical Research: Planets.

[20]  A. Konopliv,et al.  Evidence of non-uniform crust of Ceres from Dawn’s high-resolution gravity data , 2020, Nature Astronomy.

[21]  Makoto Yoshikawa,et al.  Hayabusa2 mission status: Landing, roving and cratering on asteroid Ryugu , 2020 .

[22]  D. Scheeres,et al.  Doubly synchronous binary asteroid mass parameter observability , 2019, Icarus.

[23]  Berkeley,et al.  The gravity field and interior structure of Dione , 2019, Icarus.

[24]  Gian Carlo Cardarilli,et al.  Hardware Prototyping and Validation of a W-ΔDOR Digital Signal Processor , 2019, Applied Sciences.

[25]  M. C. Nolan,et al.  The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements , 2019, Nature Astronomy.

[26]  P. Rosenblatt,et al.  Signature of Phobos’ interior structure in its gravity field and libration , 2019, Icarus.

[27]  M. K. Crombie,et al.  Shape of (101955) Bennu indicative of a rubble pile with internal stiffness , 2019, Nature Geoscience.

[28]  A. Milani,et al.  A multi-arc approach for chaotic orbit determination problems , 2018, Celestial Mechanics and Dynamical Astronomy.

[29]  Derek C. Richardson,et al.  AIDA DART asteroid deflection test: Planetary defense and science objectives , 2018, Planetary and Space Science.

[30]  Michelle M. Guevara,et al.  MONTE: the next generation of mission design and navigation software , 2018, CEAS Space Journal.

[31]  Giacomo Tommei,et al.  Radio science investigations with the Asteroid impact mission , 2017, Advances in Space Research.

[32]  William V. Boynton,et al.  The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument , 2017 .

[33]  D. Scheeres,et al.  Shape Dependence of the Kinetic Deflection of Asteroids , 2017 .

[34]  Takahide Mizuno,et al.  Development of the Laser Altimeter (LIDAR) for Hayabusa2 , 2017 .

[35]  Y. Tsuda,et al.  Hayabusa2 Mission Overview , 2017 .

[36]  B. J. Buratti,et al.  The Rosetta mission orbiter science overview: the comet phase , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Xiyun Hou,et al.  Mutual potential between two rigid bodies with arbitrary shapes and mass distributions , 2017 .

[38]  Damon Landau,et al.  Psyche: Journey to a metal world , 2017, 2017 IEEE Aerospace Conference.

[39]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[40]  David E. Smith,et al.  Precession of Mercury’s Perihelion from Ranging to the MESSENGER Spacecraft , 2017 .

[41]  C. Russell,et al.  A partially differentiated interior for (1) Ceres deduced from its gravity field and shape , 2016, Nature.

[42]  Joachim M. Blum,et al.  Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission , 2016 .

[43]  Luciano Iess,et al.  Rhea gravity field and interior modeling from Cassini data analysis , 2016 .

[44]  P. Michel,et al.  Asteroid Impact and Deflection Assessment mission , 2015 .

[45]  A. Milani,et al.  Shadowing Lemma and chaotic orbit determination , 2015, 1506.03221.

[46]  David E. Smith,et al.  Simulated recovery of Europa's global shape and tidal Love numbers from altimetry and radio tracking during a dedicated flyby tour , 2015 .

[47]  J. Margot,et al.  NEAR-EARTH ASTEROID SATELLITE SPINS UNDER SPIN–ORBIT COUPLING , 2014, 1410.0082.

[48]  David E. Smith,et al.  Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta , 2014 .

[49]  Donald E. Brownlee,et al.  The Stardust Mission: Analyzing Samples from the Edge of the Solar System , 2014 .

[50]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[51]  David E. Smith,et al.  Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter , 2014, Geophysical research letters.

[52]  Luciano Iess,et al.  Astra: Interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques , 2014 .

[53]  P. Kuchynka,et al.  The Planetary and Lunar Ephemerides DE430 and DE431 , 2014 .

[54]  Jean-Charles Marty,et al.  Phobos interior from librations determination using Doppler and star tracker measurements , 2013 .

[55]  Italy,et al.  Numerical Error in Interplanetary Orbit Determination Software , 2013, 1908.07858.

[56]  D. W. Curkendall,et al.  Delta-DOR: The One-Nanoradian Navigation Measurement System of the Deep Space Network --- History, Architecture, and Componentry , 2013 .

[57]  D. Scheeres,et al.  Dynamic limits on planar libration-orbit coupling around an oblate primary , 2013, Celestial Mechanics and Dynamical Astronomy.

[58]  F. Spoto,et al.  Near Earth Asteroids with measurable Yarkovsky effect , 2012, 1212.4812.

[59]  Sami W. Asmar,et al.  Gravity Recovery and Interior Laboratory Simulations of Static and Temporal Gravity Field , 2012 .

[60]  Jozef C. van der Ha,et al.  Precise modelling of solar and thermal accelerations on Rosetta , 2012 .

[61]  J. Margot,et al.  NEAR-EARTH BINARIES AND TRIPLES: ORIGIN AND EVOLUTION OF SPIN-ORBITAL PROPERTIES , 2011, 1111.2794.

[62]  Jürgen Oberst,et al.  Phobos control point network, rotation, and shape , 2010 .

[63]  Erwan Mazarico,et al.  Geodetic constraints from multi-beam laser altimeter crossovers , 2010 .

[64]  H. Riris,et al.  Optical system design and integration of the Lunar Orbiter Laser Altimeter. , 2009, Applied optics.

[65]  Daniel J. Scheeres,et al.  Stability of the planar full 2-body problem , 2009 .

[66]  R. Park,et al.  Estimating Small-Body Gravity Field from Shape Model and Navigation Data , 2008 .

[67]  D. Scheeres,et al.  Simulation and analysis of the dynamics of binary near-Earth Asteroid (66391) 1999 KW4 , 2008 .

[68]  P. Tricarico Figure–figure interaction between bodies having arbitrary shapes and mass distributions: a power series expansion approach , 2007, 0711.2078.

[69]  J. Ashenberg Mutual gravitational potential and torque of solid bodies via inertia integrals , 2007 .

[70]  K. Glassmeier,et al.  The Rosetta Mission: Flying Towards the Origin of the Solar System , 2007 .

[71]  Ryan S. Park,et al.  Covariance Analysis of Cassini Titan Flyby using SAR and Altimetry Data , 2006 .

[72]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[73]  Takahide Mizuno,et al.  Lidar on board asteroid explorer Hayabusa , 2006, International Conference on Space Optics.

[74]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[75]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[76]  Luciano Iess,et al.  Spacecraft Doppler tracking: Noise budget and accuracy achievable in precision radio science observations , 2005 .

[77]  John Cavanaugh,et al.  Optical system design and integration of the mercury laser altimeter. , 2005, Applied optics.

[78]  Michael E. Zolensky,et al.  Stardust: Comet and interstellar dust sample return mission , 2003 .

[79]  Andrew F. Cheng,et al.  The NEAR shoemaker mission to asteroid 433 eros , 2002 .

[80]  Frank G. Lemoine,et al.  An improved solution of the gravity field of Mars (GMM‐2B) from Mars Global Surveyor , 2001 .

[81]  Veverka,et al.  Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros , 2000, Science.

[82]  Frank G. Lemoine,et al.  The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor , 1999 .

[83]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[84]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[85]  Andrzej J. Maciejewski,et al.  Reduction, relative equilibria and potential in the two rigid bodies problem , 1995 .

[86]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[87]  T. D. Moyer Mathematical formulation of the Double Precision Orbit Determination Program /DPODP/ , 1971 .

[88]  Peer Review File Manuscript Title: Orbital Period Change of Dimorphos Due to the DART Kinetic Impact Reviewer Comments & Author Rebuttals , 2023 .

[89]  David E. Smith,et al.  The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data , 2018 .

[90]  W. Blume,et al.  Deep Impact – A Review of the World's Pioneering Hypervelocity Impact Mission , 2015 .

[91]  Akira Tsuchiyama,et al.  Hayabusa Sample Return Mission , 2015 .

[92]  Alexander Cropp,et al.  PROBA-3: Precise formation flying demonstration mission , 2013 .

[93]  Daniel J. Scheeres,et al.  Energy and stability in the Full Two Body Problem , 2008 .

[94]  D. Scheeres,et al.  Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia , 1996 .