Self‐tunable chaotic true random bit generator in current‐mode CMOS circuit with nonlinear distortion analysis

[1]  Tommaso Addabbo,et al.  Embedded electronic circuits for cryptography, hardware security and true random number generation: an overview , 2017, Int. J. Circuit Theory Appl..

[2]  W. Guggenbuhl,et al.  On charge injection in analog MOS switches and dummy switch compensation techniques , 1990 .

[3]  Ángel Rodríguez-Vázquez,et al.  Nonlinear switched-current CMOS IC for random signal generation , 1993 .

[4]  Massimo Alioto,et al.  A feedback strategy to improve the entropy of a chaos-based random bit generator , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  E. Inzunza-González,et al.  Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic , 2019, Nonlinear Dynamics.

[6]  Ada Fort,et al.  Very High-Speed True Random Noise Generator , 2000 .

[7]  Ángel Rodríguez-Vázquez,et al.  SWITCHED-CAPACITOR BROADBAND NOISE GENERATOR FOR CMOS VLSI , 1991 .

[8]  R. Hu,et al.  Switched-current 3-bit CMOS 4.0-MHz wideband random signal generator , 2005, IEEE Journal of Solid-State Circuits.

[9]  Massimo Alioto,et al.  Efficient Post-Processing Module for a Chaos-based Random Bit Generator , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[10]  Ángel Rodríguez-Vázquez,et al.  Mixed-signal map-configurable integrated chaos generator for chaotic communications , 2001 .

[11]  Andrea Gerosa,et al.  A fully integrated chaotic system for the generation of truly random numbers , 2002 .

[12]  Huang Zhun,et al.  A chaotic circuit for truly random number generation , 2003, ASICON 2003.

[13]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[14]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[15]  L. Kocarev,et al.  Chaos-based random number generators. Part II: practical realization , 2001 .

[16]  Tommaso Addabbo,et al.  A low-complexity programmable current mode circuit to design the sawtooth chaotic map , 2017, 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[17]  Tommaso Addabbo,et al.  An Efficient and Accurate Method for the Estimation of Entropy and Other Dynamical Invariants for Piecewise Affine Chaotic Maps , 2009, Int. J. Bifurc. Chaos.

[18]  Gary Froyland,et al.  Ulam's method for random interval maps , 1999 .

[19]  Tommaso Addabbo,et al.  Invariant Measures of Tunable Chaotic Sources: Robustness Analysis and Efficient Estimation , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Ángel Rodríguez-Vázquez,et al.  Integrated chaos generators , 2002 .