Polynomial Hamiltonian systems with movable algebraic singularities
暂无分享,去创建一个
[1] Philipp Nadel,et al. Ordinary Differential Equations In The Complex Domain , 2016 .
[2] G. Filipuk,et al. Movable algebraic singularities of second-order ordinary differential equations , 2008, 0804.2859.
[3] S. Shimomura. Nonlinear differential equations of second Painlevé type with the quasi-Painlevé property along a rectifiable curve , 2008 .
[4] S. Shimomura. A class of differential equations of PI-type with the quasi-Painlevé property , 2007 .
[5] S. Shimomura. Proofs of the Painlevé property for all Painlevé equations , 2003 .
[6] Ilpo Laine,et al. Painlev'e di erential equations in the complex plane , 2002 .
[7] A. Hinkkanen,et al. Solutions of the first and second Painlevé equations are meromorphic , 1999 .
[8] C. M. Cosgrove,et al. Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .
[9] Y. Murata. On fixed and movable singularities of systems of rational differential equations of order $n$ , 1988 .
[10] Kazuo Okamoto. Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .
[11] Kazuo Okamoto. Studies on the Painlevé equations , 1986 .
[12] Tosihusa Kimura,et al. On systems of differential equations of order two with fixed Branch points , 1980 .
[13] R. Garnier. Sur des systèmes différentiels du second ordre dont l'intégrale générale est uniforme , 1960 .
[14] Kimura Tosihusa. Sur les points singuliers essentiels mobiles des equations differentielles du second order , 1956 .
[15] R. A. Smith. On the Singularities in the Complex Plane of the Solutions of yn+y′f(y)+g(y)=P(x) , 1953 .
[16] P. Painlevé,et al. Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .
[17] S. Pepin. Sur les équations différentielles du second ordre , 1878 .