Polynomial Hamiltonian systems with movable algebraic singularities

[1]  Philipp Nadel,et al.  Ordinary Differential Equations In The Complex Domain , 2016 .

[2]  G. Filipuk,et al.  Movable algebraic singularities of second-order ordinary differential equations , 2008, 0804.2859.

[3]  S. Shimomura Nonlinear differential equations of second Painlevé type with the quasi-Painlevé property along a rectifiable curve , 2008 .

[4]  S. Shimomura A class of differential equations of PI-type with the quasi-Painlevé property , 2007 .

[5]  S. Shimomura Proofs of the Painlevé property for all Painlevé equations , 2003 .

[6]  Ilpo Laine,et al.  Painlev'e di erential equations in the complex plane , 2002 .

[7]  A. Hinkkanen,et al.  Solutions of the first and second Painlevé equations are meromorphic , 1999 .

[8]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[9]  Y. Murata On fixed and movable singularities of systems of rational differential equations of order $n$ , 1988 .

[10]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[11]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[12]  Tosihusa Kimura,et al.  On systems of differential equations of order two with fixed Branch points , 1980 .

[13]  R. Garnier Sur des systèmes différentiels du second ordre dont l'intégrale générale est uniforme , 1960 .

[14]  Kimura Tosihusa Sur les points singuliers essentiels mobiles des equations differentielles du second order , 1956 .

[15]  R. A. Smith On the Singularities in the Complex Plane of the Solutions of yn+y′f(y)+g(y)=P(x) , 1953 .

[16]  P. Painlevé,et al.  Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .

[17]  S. Pepin Sur les équations différentielles du second ordre , 1878 .