The CaloCube calorimeter for high-energy cosmic-ray measurements in space: performance of a large-scale prototype
暂无分享,去创建一个
A. Basti | N. Zampa | P. Spillantini | S. Albergo | A. Tricomi | P. Maestro | A. Vedda | P. Cattaneo | N. Finetti | P. Papini | O. Adriani | S. Bottai | M. Bongi | V. Bonvicini | N. Mori | C. Pizzolotto | S. Ricciarini | E. Vannuccini | G. Zampa | M. Antonelli | P. Marrocchesi | A. Trifirò | A. Rappoldi | A. Sciuto | L. Auditore | G. Bigongiari | L. Bonechi | P. Brogi | G. Castellini | S. Detti | A. Italiano | G. Orzan | M. Olmi | L. Pacini | M. Pellegriti | O. Starodubtsev | F. Stolzi | J. Suh | A. Sulaj | A. Tiberio | M. Trimarchi | M. Fasoli | A. Agnesi | C. Checchia | F. Pirzio | E. Berti | R. D’Alessandro | C. Poggiali | C. Poggiali
[1] Z. Xu,et al. Measurement of the Cosmic Ray Helium Energy Spectrum from 70 GeV to 80 TeV with the DAMPE Space Mission. , 2021, Physical review letters.
[2] Arnulf Quadt,et al. Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .
[3] A. Basti,et al. The CALOCUBE project for a space based cosmic ray experiment: design, construction, and first performance of a high granularity calorimeter prototype , 2019, Journal of Instrumentation.
[4] Y. F. Wang,et al. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite , 2019, Science Advances.
[5] Y. Dong,et al. Overall Status of the High Energy Cosmic Radiation Detection Facility Onboard the Future China's Space Station , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).
[6] T. G. Guzik,et al. Direct Measurement of the Cosmic-Ray Helium Spectrum from 40 GeV to 250 TeV with the Calorimetric Electron Telescope on the International Space Station. , 2023, Physical Review Letters.
[7] A. Basti,et al. CaloCube: a new concept calorimeter for the detection of high energy cosmic rays in space , 2017, Journal of Physics: Conference Series.
[8] T. G. Guzik,et al. Extended Measurement of the Cosmic-Ray Electron and Positron Spectrum from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope on the International Space Station. , 2018, Physical review letters.
[9] D. Karmanov,et al. New Universal Cosmic-Ray Knee near a Magnetic Rigidity of 10 TV with the NUCLEON Space Observatory , 2018, JETP Letters.
[10] M. Casolino,et al. Ten years of PAMELA in space , 2018, 1801.10310.
[11] R. Sagdeev,et al. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station. , 2018, Physical review letters.
[12] G. Donvito,et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons , 2017, Nature.
[13] A. Basti,et al. CaloCube: an innovative homogeneous calorimeter for the next-generation space experiments , 2017 .
[14] A. Basti,et al. CaloCube: an isotropic spaceborne calorimeter for high-energy cosmic rays. Optimization of the detector performance for protons and nuclei☆ , 2017 .
[15] A. Moiseev,et al. Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope , 2017, 1704.07195.
[16] D. Cauz,et al. Calocube - A highly segmented calorimeter for a space based experiment , 2016 .
[17] R. Sagdeev,et al. Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station. , 2015, Physical review letters.
[18] D. Cauz,et al. CALOCUBE: an approach to high-granularity and homogenous calorimetry for space based detectors , 2015 .
[19] Haibing Hu,et al. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO , 2015, 1502.03164.
[20] R. Sagdeev,et al. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. , 2014, Physical review letters.
[21] R. Sagdeev,et al. Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.
[22] V. Vlachoudis,et al. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications , 2014 .
[23] K. C. Kim,et al. Proton and Helium Spectra from the CREAM-III Flight , 2017, 1704.02512.
[24] H. J. Gils,et al. KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays , 2013, 1306.6283.
[25] N. B. Conklin,et al. COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE FIRST CREAM FLIGHT , 2011, 1102.2575.
[26] N. Zampa,et al. A Double-Gain, Large Dynamic Range Front-end ASIC With A/D Conversion for Silicon Detectors Read-Out , 2010, IEEE Transactions on Nuclear Science.
[27] T. G. Guzik,et al. Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results , 2009, 1101.3246.
[28] et al,et al. Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. , 2009, 0905.0105.
[29] A. R. Bazer-Bachi,et al. 1 M ay 2 00 9 Probing the ATIC peak in the cosmic-ray electron spectrum with , 2009 .
[30] A. R. Bazer-Bachi,et al. Energy spectrum of cosmic-ray electrons at TeV energies. , 2008, Physical review letters.
[31] A. Ferrari,et al. FLUKA: A Multi-Particle Transport Code , 2005 .
[32] S. B. Ricciarini,et al. Development of the ADAMO detector: test with cosmic rays at different zenith angles , 2005 .