Spatiotemporal properties of eye position signals in the primate central thalamus.

Although both sensory and motor signals in multiple cortical areas are modulated by eye position, the origin of eye position signals for cortical neurons remains uncertain. One likely source is the central thalamus, which contains neurons sensitive to eye position. Because the central thalamus receives inputs from the brainstem, these neurons may transmit eye position signals arising from the neural integrator or from proprioceptive feedback. However, because the central thalamus also receives inputs from many cortical areas, eye position signals in the central thalamus could come from the cerebral cortex. To clarify these possibilities, spatial and temporal properties of eye position signals in the central thalamus were examined in trained monkeys. Data showed that eye position signals were decomposed into horizontal and vertical components, suggesting that the central thalamus lies within pathways that transmit brainstem eye position signals to the cortex. Further quantitative analyses suggested that 2 distinct groups of thalamic neurons mediate eye position signals from different subcortical origins, and that the signals are modified dynamically through ascending pathways. Eye position signals through the central thalamus may play essential roles in spatial transformation performed by cortical networks.

[1]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[2]  L. Benevento,et al.  The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta) , 1975, The Journal of comparative neurology.

[3]  U. Büttner,et al.  Vestibular projections to the monkey thalamus: An autoradiographic study , 1979, Brain Research.

[4]  H. Kennedy,et al.  Anatomical evidence of a third ascending vestibular pathway involving the ventral lateral geniculate nucleus and the intralaminar nuclei of the cat , 1979, Brain Research.

[5]  J. K. Harting,et al.  Ascending pathways from the monkey superior colliculus: An autoradiographic analysis , 1980, The Journal of comparative neurology.

[6]  F. A. Miles,et al.  Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. , 1980, Journal of neurophysiology.

[7]  F. Walberg,et al.  Afferent projections to the thalamus from the perihypoglossal nuclei , 1980, Brain Research.

[8]  D A Robinson,et al.  The use of control systems analysis in the neurophysiology of eye movements. , 1981, Annual review of neuroscience.

[9]  E. Batschelet Circular statistics in biology , 1981 .

[10]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J Schlag,et al.  Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. , 1984, Journal of neurophysiology.

[12]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[13]  M. Schlag-Rey,et al.  Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. , 1984, Journal of neurophysiology.

[14]  J. M. Delgado-Garcia,et al.  Behavior of neurons in the abducens nucleus of the alert cat—I. Motoneurons , 1986, Neuroscience.

[15]  D A Robinson,et al.  Hysteresis and slow drift in abducens unit activity. , 1986, Journal of neurophysiology.

[16]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[17]  J. M. Delgado-Garcia,et al.  Behavior of neurons in the abducens nucleus of the alert cat—III. Axotomized motoneurons , 1988, Neuroscience.

[18]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[19]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  R. Baker,et al.  Discharge characteristics of medial rectus and abducens motoneurons in the goldfish. , 1991, Journal of neurophysiology.

[22]  M. Segraves Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. , 1992, Journal of neurophysiology.

[23]  A. Fuchs,et al.  The neuronal substrate of integration in the oculomotor system , 1992, Progress in Neurobiology.

[24]  D. Boussaoud Primate premotor cortex: modulation of preparatory neuronal activity by gaze angle. , 1995, Journal of neurophysiology.

[25]  J. Simpson,et al.  Dynamics of rabbit vestibular nucleus neurons and the influence of the flocculus. , 1995, Journal of neurophysiology.

[26]  J I Simpson,et al.  Dynamics of abducens nucleus neurons in the awake rabbit. , 1995, Journal of neurophysiology.

[27]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[28]  S. Squatrito,et al.  Gaze field properties of eye position neurones in areas MST and 7a of the macaque monkey , 1996, Visual Neuroscience.

[29]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[30]  J M Groh,et al.  Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus. , 1996, Journal of neurophysiology.

[31]  C. Scudder,et al.  Anatomy and physiology of the primate interstitial nucleus of Cajal I. efferent projections. , 1996, Journal of neurophysiology.

[32]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[33]  K. Hoffmann,et al.  Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. , 1997, Journal of neurophysiology.

[34]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[35]  J Tanji,et al.  Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. , 1997, Journal of neurophysiology.

[36]  Bremmer,et al.  Eye position encoding in the macaque posterior parietal cortex , 1998, The European journal of neuroscience.

[37]  M. Tanaka,et al.  Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys. , 1998, Journal of neurophysiology.

[38]  F Bremmer,et al.  Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey. , 1998, Journal of neurophysiology.

[39]  H. H. Chung,et al.  Dynamic representation of eye position in the parieto-occipital sulcus. , 1999, Journal of neurophysiology.

[40]  J. Donoghue,et al.  Gaze Direction Modulates Finger Movement Activation Patterns in Human Cerebral Cortex , 1999, The Journal of Neuroscience.

[41]  Tutis Vilis,et al.  Eye position signals modulate early dorsal and ventral visual areas. , 2002, Cerebral cortex.

[42]  S. Lisberger,et al.  Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. I. Basic response properties to retinal image motion and position. , 2002, Journal of neurophysiology.

[43]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[44]  T. Stanford,et al.  Quantitative assessment of the timing and tuning of visual-related, saccade-related, and delay period activity in primate central thalamus. , 2003, Journal of neurophysiology.

[45]  Masaki Tanaka,et al.  Contribution of signals downstream from adaptation to saccade programming. , 2003, Journal of neurophysiology.

[46]  R. M. Siegel,et al.  Functional architecture of eye position gain fields in visual association cortex of behaving monkey. , 2003, Journal of neurophysiology.

[47]  David W Tank,et al.  History dependence of rate covariation between neurons during persistent activity in an oculomotor integrator. , 2003, Cerebral cortex.

[48]  C. Pierrot-Deseilligny,et al.  Impairment of extraretinal eye position signals after central thalamic lesions in humans , 2004, Experimental Brain Research.

[49]  J. Schlag,et al.  Supplementary eye field: influence of eye position on neural signals of fixation , 2004, Experimental Brain Research.

[50]  Ankoor S. Shah,et al.  Timing and laminar profile of eye-position effects on auditory responses in primate auditory cortex. , 2004, Journal of neurophysiology.

[51]  Lawrence H Snyder,et al.  A neural network model of flexible spatial updating. , 2004, Journal of neurophysiology.

[52]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.

[53]  R. Wurtz,et al.  What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. , 2004, Journal of neurophysiology.

[54]  R. Wurtz,et al.  What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. , 2004, Journal of neurophysiology.

[55]  R. Eckmiller Hysteresis in the static characteristics of eye position coded neurons in the alert monkey , 2004, Pflügers Archiv.

[56]  Markus Lappe,et al.  Effect of saccadic adaptation on localization of visual targets. , 2005, Journal of neurophysiology.

[57]  I Daum,et al.  The role of the human thalamus in processing corollary discharge. , 2005, Brain : a journal of neurology.

[58]  Masaki Tanaka,et al.  Effects of eye position on estimates of eye displacement for spatial updating , 2005, Neuroreport.

[59]  P. Goldman-Rakic,et al.  Comparison of oculomotor neuronal activity in paralaminar and mediodorsal thalamus in the rhesus monkey. , 2005, Journal of neurophysiology.

[60]  Masaki Tanaka,et al.  Smooth Pursuit Eye Movements , 2018 .