Network Preference Dynamics using Lattice Theory

Preferences, fundamental in all forms of strategic behavior and collective decision-making, in their raw form, are an abstract ordering on a set of alternatives. Agents, we assume, revise their preferences as they gain more information about other agents. Exploiting the ordered algebraic structure of preferences, we introduce a message-passing algorithm for heterogeneous agents distributed over a network to update their preferences based on aggregations of the preferences of their neighbors in a graph. We demonstrate the existence of equilibrium points of the resulting global dynamical system of local preference updates and provide a sufficient condition for trajectories to converge to equilibria: stable preferences. Finally, we present numerical simulations demonstrating our preliminary results.

[1]  Tamara von Glehn,et al.  Asynchronous Algorithmic Alignment with Cocycles , 2023, LoG.

[2]  M. Zavlanos,et al.  Max-Plus Synchronization in Decentralized Trading Systems , 2023, 2023 62nd IEEE Conference on Decision and Control (CDC).

[3]  R. Ghrist,et al.  Diffusion of Information on Networked Lattices by Gossip , 2022, 2022 IEEE 61st Conference on Decision and Control (CDC).

[4]  Andrew Dudzik,et al.  Graph Neural Networks are Dynamic Programmers , 2022, NeurIPS.

[5]  G. Ritter,et al.  Lattice Theory , 2021, Introduction to Lattice Algebra.

[6]  Nicholas D. Lane,et al.  Do We Need Anisotropic Graph Neural Networks? , 2021, ICLR.

[7]  Robert Ghrist,et al.  Opinion Dynamics on Discourse Sheaves , 2020, SIAM J. Appl. Math..

[8]  Hossein Noorazar Recent advances in opinion propagation dynamics: a 2020 survey , 2020, The European Physical Journal Plus.

[9]  Bahman Gharesifard,et al.  A Polya Contagion Model for Networks , 2017, IEEE Transactions on Control of Network Systems.

[10]  Radko Mesiar,et al.  Aggregation functions on bounded lattices , 2017, Int. J. Gen. Syst..

[11]  Michael C. Munger,et al.  Choosing in Groups: Analytical Politics Revisited , 2015 .

[12]  R. Srikant,et al.  Opinion dynamics in social networks with stubborn agents: Equilibrium and convergence rate , 2014, Autom..

[13]  John N. Tsitsiklis,et al.  On Krause's Multi-Agent Consensus Model With State-Dependent Connectivity , 2008, IEEE Transactions on Automatic Control.

[14]  Kfir Eliaz,et al.  Indifference or indecisiveness? Choice-theoretic foundations of incomplete preferences , 2006, Games Econ. Behav..

[15]  Van H. Vu,et al.  Generating Random Regular Graphs , 2003, STOC '03.

[16]  A. Beardon,et al.  The non-existence of a utility function and the structure of non-representable preference relations , 2002 .

[17]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[18]  Ophir Rachman,et al.  Atomic snapshots using lattice agreement , 1995, Distributed Computing.

[19]  Jean-Pierre Barthélemy,et al.  A Formal Theory of Consensus , 1991, SIAM J. Discret. Math..

[20]  J. Barthelemy,et al.  On the use of ordered sets in problems of comparison and consensus of classifications , 1986 .

[21]  P. Cousot,et al.  Constructive versions of tarski's fixed point theorems , 1979 .

[22]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[23]  M. Degroot Reaching a Consensus , 1974 .

[24]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[25]  E. Streller [De gustibus (non) est disputandum]. , 1962, Rontgen- und Laboratoriumspraxis.

[26]  John C. Harsanyi,et al.  Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility , 1955, Journal of Political Economy.

[27]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[28]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[29]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[30]  Steven Givant,et al.  The calculus of relations , 2017 .

[31]  Christopher P. Chambers,et al.  Rules for aggregating information , 2011, Soc. Choice Welf..

[32]  Steven Roman,et al.  Lattices and ordered sets , 2008 .

[33]  G. Tullock,et al.  The calculus of consent : logical foundations of constitutional democracy , 1962 .