A Generalized Synthetic Strategy for Transition Metal Doped Brookite-Phase TiO2 Nanorods.

We report a generalized wet-chemical methodology for the synthesis of transition metal (M) doped brookite-phase TiO2 nanorods (NRs) with unprecedented wide-range tunability in dopant composition (M = V, Cr, Mn, Fe, Co, Ni, Cu, Mo, etc.). These quadrangular NRs can selectively expose {210} surface facets, which is induced by their strong affinity for oleylamine stabilizer. This structure is well preserved with variable dopant compositions and concentrations, leading to a diverse library of TiO2 NRs wherein the dopants in single-atom form are homogeneously distributed in a brookite-phase solid lattice. This synthetic method allows tuning of dopant-dependent properties of TiO2 nanomaterials for new opportunities in catalysis applications.

[1]  Takashi Toyao,et al.  Low-Temperature Hydrogenation of CO2 to Methanol over Heterogeneous TiO2-Supported Re Catalysts , 2019, ACS Catalysis.

[2]  Jennifer D Lee,et al.  Thermal and Photocatalytic Reactions of Methanol and Acetaldehyde on Pt-Modified Brookite TiO2 Nanorods , 2018, ACS Catalysis.

[3]  Adam Holewinski,et al.  Prospects of Platinum-Based Nanostructures for the Electrocatalytic Reduction of Oxygen , 2018, ACS Catalysis.

[4]  Shuhong Yu,et al.  Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing. , 2018, Chemical reviews.

[5]  J. Vohs,et al.  Thermal and Photochemical Reactions of Methanol, Acetaldehyde, and Acetic Acid on Brookite TiO2 Nanorods , 2017 .

[6]  Younan Xia,et al.  Bimetallic Nanocrystals: Syntheses, Properties, and Applications. , 2016, Chemical reviews.

[7]  A. Selloni,et al.  Pathway of Photocatalytic Oxygen Evolution on Aqueous TiO2 Anatase and Insights into the Different Activities of Anatase and Rutile , 2016 .

[8]  Jay A. Schwalbe,et al.  Engineering titania nanostructure to tune and improve its photocatalytic activity , 2016, Proceedings of the National Academy of Sciences.

[9]  J. Fontecilla-Camps,et al.  Photoelectrochemical H2 Evolution with a Hydrogenase Immobilized on a TiO2‐Protected Silicon Electrode , 2016, Angewandte Chemie.

[10]  C. Liang,et al.  TiO2 Microboxes with Controlled Internal Porosity for High-Performance Lithium Storage. , 2015, Angewandte Chemie.

[11]  T. Mallouk,et al.  Hydrothermal Growth and Photoelectrochemistry of Highly Oriented, Crystalline Anatase TiO2 Nanorods on Transparent Conducting Electrodes , 2015 .

[12]  X. Lou,et al.  Rutile TiO2 submicroboxes with superior lithium storage properties. , 2015, Angewandte Chemie.

[13]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[14]  Matteo Cargnello,et al.  Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. , 2014, Chemical reviews.

[15]  Jing Bai,et al.  Titanium dioxide nanomaterials for sensor applications. , 2014, Chemical reviews.

[16]  J. Bisquert,et al.  Titanium dioxide nanomaterials for photovoltaic applications. , 2014, Chemical reviews.

[17]  Qing Du,et al.  Pt@Nb-TiO2 catalyst membranes fabricated by electrospinning and atomic layer deposition , 2014 .

[18]  Marnix Wagemaker,et al.  Nanostructured TiO2 anatase micropatterned three-dimensional electrodes for high-performance Li-ion batteries , 2013 .

[19]  Younan Xia,et al.  Nanoparticles for catalysis. , 2013, Accounts of chemical research.

[20]  B. Liu,et al.  Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. , 2013, Journal of the American Chemical Society.

[21]  Shuhong Yu,et al.  Synthesis of Mesoporous SiO2@TiO2 Core/Shell Nanospheres with Enhanced Photocatalytic Properties , 2013 .

[22]  Photocatalytic CO2 reduction by TiO2 and related titanium containing solids , 2012 .

[23]  Dimitri D. Vaughn,et al.  Hybrid CuO-TiO(2-x)N(x) hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. , 2012, Angewandte Chemie.

[24]  P. Fornasiero,et al.  Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. , 2012, Journal of the American Chemical Society.

[25]  C. Rudowicz,et al.  Modeling zero-field splitting parameters for dopant Mn2+ and Fe3+ ions in anatase TiO2 crystal using superposition model analysis , 2012 .

[26]  S. Skrabalak,et al.  Achieving Synergy with a Potential Photocatalytic Z-Scheme: Synthesis and Evaluation of Nitrogen-Doped TiO2/SnO2 Composites , 2012 .

[27]  R. Behm,et al.  Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. , 2011, Angewandte Chemie.

[28]  Congjun Wang,et al.  Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts , 2011 .

[29]  Zhi-You Zhou,et al.  Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. , 2011, Chemical Society reviews.

[30]  Zhongbiao Wu,et al.  Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach , 2011 .

[31]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[32]  J. M. Kikkawa,et al.  A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.

[33]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[34]  T. He,et al.  Fabrication of Rutile TiO2−Sn/Anatase TiO2−N Heterostructure and Its Application in Visible-Light Photocatalysis , 2010 .

[35]  P. Schmuki,et al.  Semimetallic TiO2 nanotubes. , 2009, Angewandte Chemie.

[36]  Vincenzo Grillo,et al.  Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. , 2008, Journal of the American Chemical Society.

[37]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[38]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[39]  G. Hutchings,et al.  Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts , 2006, Science.

[40]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[41]  F. Morfin,et al.  Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. , 2004, Journal of the American Chemical Society.

[42]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[43]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[44]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[45]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[46]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.