Matrix Extension with Symmetry and Its Application to Symmetric Orthonormal Multiwavelets

Let $\mathsf{P}$ be an $r\times s$ matrix of Laurent polynomials with symmetry such that $\mathsf{P}(z)\mathsf{P}^*(z)=I_r$ for all $z\in\mathbb{C}\backslash\{0\}$ and the symmetry of $\mathsf{P}$ is compatible. The matrix extension problem with symmetry is to find an $s\times s$ square matrix $\mathsf{P}_e$ of Laurent polynomials with symmetry such that $[I_r,\mathbf{0}]\mathsf{P}_e =\mathsf{P}$ (that is, the submatrix of the first r rows of $\mathsf{P}_e$ is the given matrix $\mathsf{P}$), $\mathsf{P}_e$ is paraunitary satisfying $\mathsf{P}_e(z)\mathsf{P}_e^*(z)=I_s$ for all $z\in\mathbb{C}\backslash\{0\}$, and the symmetry of $\mathsf{P}_e$ is compatible. Moreover, it is highly desirable in many applications that the support of the coefficient sequence of $\mathsf{P}_e$ can be controlled by that of $\mathsf{P}$. In this paper, we completely solve the matrix extension problem with symmetry by constructing such a desired matrix $\mathsf{P}_e$ from a given matrix $\mathsf{P}$. Furthermore, using a cascad...

[1]  Wolfgang Dahmen,et al.  MATRIX EXTENSION WITH SYMMETRY AND APPLICATIONS TO SYMMETRIC ORTHONORMAL COMPLEX M-WAVELETS , 2009 .

[2]  Alexander Petukhov,et al.  Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor , 2004 .

[3]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[4]  C. Chui,et al.  Construction of Compactly Supported Symmetric and Antisymmetric Orthonormal Wavelets with Scale = 3 , 1995 .

[5]  Bin Han,et al.  Analysis and Construction of Multivariate Interpolating Refinable Function Vectors , 2009 .

[6]  Zuowei Shen,et al.  An algorithm for matrix extension and wavelet construction , 1996, Math. Comput..

[7]  Zuowei Shen Extension of matrices with Laurent polynomial entries , 1996 .

[8]  Dante C. Youla,et al.  The Quillen - Suslin theorem and the structure of n-dimensional elementary polynomial matrices , 1984 .

[9]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[10]  B. Han,et al.  Generalized interpolating refinable function vectors , 2009 .

[11]  Zuowei Shen Refinable function vectors , 1998 .

[12]  B. Han On Dual Wavelet Tight Frames , 1995 .

[13]  Li-Hong Cui,et al.  Some properties and construction of multiwavelets related to different symmetric centers , 2005, Math. Comput. Simul..

[14]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[15]  B. Han,et al.  COMPACTLY SUPPORTED ORTHONORMAL COMPLEX WAVELETS WITH DILATION 4 AND SYMMETRY , 2008 .

[16]  Bin Han,et al.  Splitting a Matrix of Laurent Polynomials with Symmetry and itsApplication to Symmetric Framelet Filter Banks , 2004, SIAM J. Matrix Anal. Appl..

[17]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[18]  Qingtang Jiang,et al.  Parametrizations of symmetric orthogonal multifilter banks with different filter lengths , 2000 .

[19]  Zuowei Shen,et al.  Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions , 1999, Adv. Comput. Math..

[20]  George C. Donovan,et al.  Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .

[21]  Qingtang Jiang,et al.  Symmetric Paraunitary Matrix Extension and Parametrization of Symmetric Orthogonal Multifilter Banks , 2001, SIAM J. Matrix Anal. Appl..

[22]  Bin Han,et al.  Symmetric orthonormal scaling functions and wavelets with dilation factor 4 , 1998, Adv. Comput. Math..

[23]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .