THE CHAIN PROPERTIES AND LI-YORKE SENSITIVITY OF ZADEH'S EXTENSION ON THE SPACE OF UPPER SEMI-CONTINUOUS FUZZY SETS

Some characterizations on the chain recurrence, chain transitivity, chain mixing property,shadowing and $h$-shadowing for Zadeh's extension are obtained. Besides, it is provedthat a dynamical system is spatiotemporally chaotic provided that the Zadeh's extensionis Li-Yorke sensitive.

[1]  Xinxing Wu,et al.  Topological Dynamics of Zadeh's Extension on Upper Semi-Continuous Fuzzy Sets , 2016, Int. J. Bifurc. Chaos.

[2]  Xinxing Wu,et al.  On the Large Deviations Theorem of Weaker Types , 2016, Int. J. Bifurc. Chaos.

[3]  Xinxing Wu,et al.  On averaged tracing of periodic average pseudo orbits , 2017 .

[4]  N. Aoki,et al.  Topological theory of dynamical systems , 1994 .

[5]  Jiri Kupka,et al.  On fuzzifications of discrete dynamical systems , 2011, Inf. Sci..

[6]  Guanrong Chen,et al.  On various definitions of shadowing with average error in tracing , 2014, 1406.5822.

[7]  J. Banks,et al.  Chaos for induced hyperspace maps , 2005 .

[8]  X. Ye,et al.  When are all closed subsets recurrent? , 2015, Ergodic Theory and Dynamical Systems.

[9]  Guanrong Chen,et al.  F-sensitivity and multi-sensitivity of hyperspatial dynamical systems , 2015 .

[10]  P. Oprocha,et al.  CHARACTERIZATIONS OF ω-LIMIT SETS IN TOPOLOGICALLY HYPERBOLIC SYSTEMS , 2012 .

[11]  Xinxing Wu,et al.  The Chain Properties and Average Shadowing Property of Iterated Function Systems , 2018 .

[12]  X. Ye,et al.  Recurrence properties and disjointness on the induced spaces , 2013, 1312.2056.

[13]  Gongfu Liao,et al.  Transitivity, mixing and chaos for a class of set-valued mappings , 2006 .

[14]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[15]  François Blanchard,et al.  On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).

[16]  EQUIVALENT CONDITIONS OF DEVANEY CHAOS ON THE HYPERSPACE , 2013, 1304.2447.

[17]  Guanrong Chen,et al.  Sensitivity and transitivity of fuzzified dynamical systems , 2017, Inf. Sci..

[18]  Karl Sigmund,et al.  Topological dynamics of transformations induced on the space of probability measures , 1975 .

[19]  Jiri Kupka On Devaney chaotic induced fuzzy and set-valued dynamical systems , 2011, Fuzzy Sets Syst..

[20]  S. Kolyada,et al.  SOME ASPECTS OF TOPOLOGICAL TRANSITIVITY — — A SURVEY , 2004 .

[21]  Jiri Kupka Some chaotic and mixing properties of fuzzified dynamical systems , 2014, Inf. Sci..

[22]  Yurilev Chalco-Cano,et al.  On turbulent, erratic and other dynamical properties of Zadeh’s extensions , 2011 .

[23]  Yurilev Chalco-Cano,et al.  Some chaotic properties of Zadeh’s extensions☆ , 2008 .

[24]  Xinxing Wu,et al.  On the Iteration Properties of Large Deviations Theorem , 2016, Int. J. Bifurc. Chaos.

[25]  Anima Nagar,et al.  Inducing sensitivity on hyperspaces , 2010 .

[26]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[27]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[28]  Guo Wei,et al.  Dynamical systems over the space of upper semicontinuous fuzzy sets , 2012, Fuzzy Sets Syst..

[29]  C. Good,et al.  Shadowing for induced maps of hyperspaces , 2016 .

[30]  Guo Wei,et al.  Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems , 2009 .

[31]  Shadowing for induced maps of hyperspaces Good , 2016 .

[32]  Ethan Akin,et al.  Li-Yorke sensitivity , 2003 .

[33]  A. Illanes,et al.  Dynamic properties for the induced maps in the symmetric products , 2012 .

[34]  Mate Puljiz,et al.  Chain transitivity in hyperspaces , 2015 .

[35]  Xinxing Wu Chaos of Transformations Induced Onto the Space of Probability Measures , 2016, Int. J. Bifurc. Chaos.

[36]  Guanrong Chen,et al.  Weighted backward shift operators with invariant distributionally scrambled subsets , 2017 .

[37]  Piotr Oprocha,et al.  Topological entropy and chaos for maps induced on hyperspaces , 2007 .

[38]  Xinxing Wu A Remark on Topological Sequence Entropy , 2017, Int. J. Bifurc. Chaos.

[39]  Xinxing Wu,et al.  Furstenberg families, sensitivity and the space of probability measures , 2017 .

[40]  David Richeson,et al.  Chain recurrence rates and topological entropy , 2008, 0801.1635.