Architecture of turbidite channel systems on the continental slope: Patterns and predictions

[1]  D. Piper,et al.  Turbidite Depositional Patterns and Flow Characteristics, Navy Submarine Fan, California Borderland , 1983 .

[2]  E. Mutti Turbidite Systems and Their Relations to Depositional Sequences , 1985 .

[3]  A. Bouma,et al.  Submarine fans and related turbidite systems , 1985 .

[4]  Dsdp Leg Shipboard Scientists,et al.  Drilling Results on the Middle Mississippi Fan , 1985 .

[5]  G. Zuffa,et al.  Provenance of arenites , 1985 .

[6]  O. Berg,et al.  Seismic stratigraphy II : an integrated approach to hydrocarbon exploration , 1985 .

[7]  T. McHargue,et al.  Internal Geometry, Seismic Facies, and Petroleum Potential of Canyons and Inner Fan Channels of the Indus Submarine Fan , 1986 .

[8]  S. Phillips Dipmeter Interpretation of Turbidite Channel Reservoir Sandstones Indian Draw Field New Mexico , 1987 .

[9]  W. Normark,et al.  Comparing Examples of Modern and Ancient Turbidite Systems: Problems and Concepts , 1987 .

[10]  H. Posamentier,et al.  Eustatic Controls on Clastic Deposition II—sequence and Systems Tract Models , 1988 .

[11]  Seismic Stratigraphic Criteria for Recognition of Submarine Fans , 1989 .

[12]  M. Link,et al.  Seismic facies and sedimentary processes of submarine fans and turbidite systems , 1991 .

[13]  T. McHargue Seismic Facies, Processes, and Evolution of Miocene Inner Fan Channels, Indus Submarine Fan , 1991 .

[14]  R. D. Erskine,et al.  Models for Submarine-Fan Deposition within a Sequence-Stratigraphic Framework , 1991 .

[15]  W. Normark,et al.  An Integrated Approach to the Study of Turbidite Systems , 1991 .

[16]  R. Mitchum,et al.  Recognizing Sequences and Systems Tracts from Well Logs, Seismic Data, and Biostratigraphy: Examples from the Late Cenozoic of the Gulf of Mexico: Chapter 7: Recent Applications of Siliciclastic Sequence Stratigraphy , 1993 .

[17]  M. Richards,et al.  Turbidite Systems in Deep-Water Basin Margins Classified by Grain Size and Feeder System , 1994 .

[18]  H. Posamentier,et al.  Siliciclastic Sequence Stratigraphy: Recent Developments and Applications , 1994 .

[19]  C. Pirmez,et al.  Morphology and structure of Amazon Channel , 1995 .

[20]  C. Winker High-Resolution Seismic Stratigraphy of a Late Pleistocene Submarine Fan Ponded by Salt-Withdrawal Mini-Basins on the Gulf of Mexico Continental Slope , 1996 .

[21]  J. Clark,et al.  Submarine Channels: Processes and Architecture , 1996 .

[22]  M. Weber,et al.  The youngest channel-levee system of the Bengal Fan: results from digital sediment echosounder data , 1997 .

[23]  J. R. Booth,et al.  Classification, Lithologic Calibration, and Stratigraphic Succession of Seismic Facies of Intraslope Basins, Deep-Water Gulf of Mexico , 1998 .

[25]  A. Cramp,et al.  About this title , 1998, Geological Society, London, Special Publications.

[26]  Normark,et al.  Outcrop‐scale acoustic facies analysis and latest Quaternary development of Hueneme and Dume submarine fans, offshore California , 1999 .

[27]  M. Gardner,et al.  AAPG Memoir 72 / SEPM Special Publication No. 68, Chapter 19: Submarine Channel Architecture Along a Slope to Basin Profile, Brushy Canyon Formation, West Texas , 2000 .

[28]  Lincoln Foreman,et al.  Architectural Analysis of Deep-Water Outcrops: Implications for Exploration and Development of the Diana Sub-Basin, Western Gulf of Mexico , 2000 .

[29]  A. Bouma,et al.  Fine-Grained Turbidite Systems , 2000 .

[30]  T. Elliott Depositional Architecture of a Sand-Rich, Channelized Turbidite System: The Upper Carboniferous Ross Sandstone Formation, Western Ireland , 2000 .

[31]  H. Posamentier,et al.  Deep Water Depositional Systems—Ultra-Deep Makassar Strait, Indonesia , 2000 .

[32]  S. J. Friedmann,et al.  Equilibrium Profile and Baselevel in Submarine Channels: Examples from Late Pleistocene Systems and Implications for the Architecture of Deepwater Reservoirs , 2000 .

[33]  M. Mayall,et al.  The Architecture of Turbidite Slope Channels , 2000 .

[34]  S. J. Friedmann,et al.  High Resolution Seismic/Sequence Stratigraphic Framework for the Evolution of Pleistocene Intra Slope Basins, Western Gulf of Mexico: Depositional Models and Reservoir Analogs , 2000 .

[35]  J. Peakall,et al.  A Process Model for the Evolution, Morphology, and Architecture of Sinuous Submarine Channels , 2000 .

[36]  J. Coleman,et al.  Deep-water reservoirs of the world , 2000 .

[37]  L. Droz,et al.  Late Quaternary channel avulsions on the Danube deep-sea fan, Black Sea , 2001 .

[38]  N. Keskes,et al.  Deepwater turbidite system analysis, West Africa: Sedimentary model and implications for reservoir model construction , 2002 .

[39]  P. Hill,et al.  Quantitative analysis of variations in depositional sequence thickness from submarine channel levees , 2002 .

[40]  F. Anselmetti,et al.  Proceedings of the Ocean Drilling Program. Initial Reports , 2002 .

[41]  Henry W. Posamentier,et al.  Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings , 2003 .

[42]  K. Campion,et al.  Outcrop Expression of Confined Channel Complexes , 2003 .

[43]  B. Kneller,et al.  Prolific deep-marine slope channels of the Nile Delta, Egypt , 2003 .

[44]  M. Barton,et al.  Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea , 2003 .

[45]  B. Kneller The influence of flow parameters on turbidite slope channel architecture , 2003 .

[46]  Carlos Pirmez,et al.  Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels , 2003 .

[47]  Henry W. Posamentier,et al.  Depositional elements associated with a basin floor channel-levee system: case study from the Gulf of Mexico , 2003 .

[48]  Jasim Imran,et al.  Reconstruction of turbidity currents in Amazon Channel , 2003 .

[49]  C. Deutsch,et al.  Geostatistics Banff 2004 , 2005 .

[50]  T. McHargue,et al.  Transient fan architecture and depositional controls from near-surface 3-D seismic data, Niger Delta continental slope , 2005 .

[51]  V. Spiess,et al.  The architecture and evolution of the Middle Bengal Fan in vicinity of the active channel–levee system imaged by high-resolution seismic data , 2005 .

[52]  Clayton V. Deutsch,et al.  Stochastic surface-based modeling of turbidite lobes , 2005 .

[53]  D. Hodgson,et al.  Submarine slope systems: processes and products , 2005, Geological Society, London, Special Publications.

[54]  T. Mulder,et al.  Concept of equilibrium profile in deep-water turbidite system: effects of local physiographic changes on the nature of sedimentary process and the geometries of deposits , 2005, Geological Society, London, Special Publications.

[55]  A HIERARCHY OF DEEP-WATER ARCHITECTURAL ELEMENTS WITH REFERENCE TO SEISMIC RESOLUTION: IMPLICATIONS FOR RESERVOIR PREDICTION AND MODELING , 2005 .

[56]  E. Jones,et al.  Turbidite channel reservoirs—Key elements in facies prediction and effective development , 2006 .

[57]  V. Kolla A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them , 2007 .

[58]  Z. Sylvester,et al.  Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope , 2007 .

[59]  R. Wynn,et al.  Sinuous deep-water channels: Genesis, geometry and architecture , 2007 .

[60]  R. Labourdette Integrated three-dimensional modeling approach of stacked turbidite channels , 2007 .

[61]  B. Savoye,et al.  Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica , 2008 .

[62]  Stratigraphic Evolution of Deep-Water Architecture: Examples of controls and depositional styles from the Magallanes Basin, southern Chile , 2009 .

[63]  R. Cook,et al.  Three-dimensional seismic geomorphology of a deep-water slope-channel system: The Sequoia field, offshore west Nile Delta, Egypt , 2009 .

[64]  J. Peakall,et al.  Outer-Bank Bars: A New Intra-Channel Architectural Element within Sinuous Submarine Slope Channels , 2009 .

[65]  B. Romans,et al.  The Influence of Mass-Transport-Deposit Surface Topography on the Evolution of Turbidite Architecture: The Sierra Contreras, Tres Pasos Formation (Cretaceous), Southern Chile , 2009 .

[66]  David R. Pyles,et al.  Concepts Learned from a 3D Outcrop of a Sinuous Slope Channel Complex: Beacon Channel Complex, Brushy Canyon Formation, West Texas, U.S.A. , 2010 .

[67]  T. McHargue,et al.  High-Relief Slope Clinoform Development: Insights from Outcrop, Magallanes Basin, Chile , 2010 .

[68]  D. Hodgson,et al.  Depositional Environments and Sequence Stratigraphy of an Exhumed Permian Mudstone-Dominated Submarine Slope Succession, Karoo Basin, South Africa , 2010 .

[69]  R. Labourdette,et al.  Element migration in turbidite systems: Random or systematic depositional processes? , 2010 .

[70]  R. Arnott,et al.  Stratal attributes and evolution of asymmetric inner- and outer-bend levee deposits associated with an ancient deep-water channel-levee complex within the Isaac Formation, southern Canada , 2011 .

[71]  Event-Based Modeling of Turbidite Channel Fill, Channel Stacking Pattern, and Net Sand Volume , 2011 .

[72]  A. Fildani,et al.  Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile , 2011 .

[73]  D. Box,et al.  Depositional architecture and sequence stratigraphy of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South Africa , 2011 .

[74]  Numerical Modeling of Deepwater Channel Stacking Pattern from Outcrop and the Quantification of Reservoir Significance , 2011 .

[75]  A. Bernhardt,et al.  Stratigraphic evolution of a submarine channel―lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile , 2011 .

[76]  Z. Sylvester,et al.  A model of submarine channel-levee evolution based on channel trajectories: Implications for stratigraphic architecture , 2011 .

[77]  D. Hodgson,et al.  Sedimentological criteria to differentiate submarine channel levee subenvironments: Exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja California, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin, S. Africa , 2011 .