Early or phantom dark energy, self-interacting, extra, or massive neutrinos, primordial magnetic fields, or a curved universe: An exploration of possible solutions to the H0 and σ8 problems

In this paper we explore the existing tensions in the local cosmological expansion rate, H 0 , and amplitude of the clustering of large-scale structure at 8 h − 1 Mpc, σ 8 , as well as models that claim to alleviate these tensions. We consider seven models: evolving dark energy ( w CDM), extra radiation ( N eff ), massive neutrinos, curvature, primordial magnetic fields (PMF), self-interacting neutrino models, and early dark energy (EDE). We test these models against three datasets that span the full range of measurable cosmological epochs, have significant precision, and are well-tested against systematic effects: the Planck 2018 cosmic microwave background data, the Sloan Digital Sky Survey baryon acoustic oscillation scale measurements, and the Pantheon catalog of type Ia supernovae. We use the recent SH0ES H 0 measurement and several measures of σ 8 (and its related parameter S 8 = σ 8 (cid:112) Ω m / 0 . 3). We find that four models are above the “strong” threshold in Bayesian model selection, w CDM, N eff , PMF, and EDE. However, only EDE also relieves the H 0 tension in the full datasets to below 2 σ . We discuss how the S 8 /σ 8 tension is reduced in recent observations. However, even when adopting a strong tension dataset, no model alleviates the S 8 /σ 8 tension, nor does better than ΛCDM in the combined case of both H 0 and S 8 /σ 8 tensions.

[1]  A. Fontana,et al.  Early Results from GLASS-JWST. III. Galaxy Candidates at z ∼9–15 , 2022, The Astrophysical Journal Letters.

[2]  J. Hjorth,et al.  Intrinsic tension in the supernova sector of the local Hubble constant measurement and its implications , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  B. Madore,et al.  The Astrophysical Distance Scale. V. A 2% Distance to the Local Group Spiral M33 via the JAGB Method, Tip of the Red Giant Branch, and Leavitt Law , 2022, The Astrophysical Journal.

[4]  David O. Jones,et al.  A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team , 2021, The Astrophysical Journal Letters.

[5]  J. Mohr,et al.  Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future , 2021, The Astrophysical Journal.

[6]  J. Lesgourgues,et al.  The $H_0$ Olympics: A fair ranking of proposed models , 2021, 2107.10291.

[7]  K. Benabed,et al.  The Design and Integrated Performance of SPT-3G , 2021, The Astrophysical Journal Supplement Series.

[8]  A. Goobar,et al.  The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties , 2021, The Astrophysical Journal.

[9]  A. Goobar,et al.  Sensitivity of the Hubble Constant Determination to Cepheid Calibration , 2021, The Astrophysical Journal.

[10]  G. Efstathiou To H0 or not to H0? , 2021, 2103.08723.

[11]  A. Melchiorri,et al.  In the realm of the Hubble tension—a review of solutions , 2021, Classical and Quantum Gravity.

[12]  V. Marra,et al.  On the use of the local prior on the absolute magnitude of Type Ia supernovae in cosmological inference , 2021, 2101.08641.

[13]  I. Esteban,et al.  Long range interactions in cosmology: implications for neutrinos , 2021, Journal of Cosmology and Astroparticle Physics.

[14]  S. Hannestad,et al.  Updated constraints on massive neutrino self-interactions from cosmology in light of the H0 tension , 2020, Journal of Cosmology and Astroparticle Physics.

[15]  Anirban Das,et al.  Flavor-specific interaction favors strong neutrino self-coupling in the early universe , 2020, Journal of Cosmology and Astroparticle Physics.

[16]  Gong-Bo Zhao,et al.  Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension , 2020, Communications Physics.

[17]  H. Hoekstra,et al.  KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics , 2020, Astronomy & Astrophysics.

[18]  W. Percival,et al.  The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body mock challenge for the eBOSS emission line galaxy sample , 2020, Monthly Notices of the Royal Astronomical Society.

[19]  D. Schneider,et al.  The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: exploring the halo occupation distribution model for emission line galaxies , 2020, 2007.09012.

[20]  A. Myers,et al.  The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body mock challenge for the quasar sample , 2020, 2007.09003.

[21]  W. Percival,et al.  The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: N-body Mock Challenge for Galaxy Clustering Measurements , 2020, Monthly Notices of the Royal Astronomical Society.

[22]  Tristan L. Smith,et al.  Clustering and halo abundances in early dark energy cosmological models , 2020, Monthly Notices of the Royal Astronomical Society.

[23]  Eleonora Di Valentino,et al.  Dark Energy with Phantom Crossing and the H0 Tension , 2020, Entropy.

[24]  A. Lewis,et al.  Cobaya: code for Bayesian analysis of hierarchical physical models , 2020, Journal of Cosmology and Astroparticle Physics.

[25]  Yin-Zhe Ma,et al.  Resolving Hubble tension by self-interacting neutrinos with Dirac seesaw , 2020, Journal of Cosmology and Astroparticle Physics.

[26]  Gustavo Marques-Tavares,et al.  Interacting radiation after Planck and its implications for the Hubble tension , 2020, Journal of Cosmology and Astroparticle Physics.

[27]  A. Klypin,et al.  Cosmological Constraints on Ωm and σ8 from Cluster Abundances Using the GalWCat19 Optical-spectroscopic SDSS Catalog , 2020, The Astrophysical Journal.

[28]  A. Melchiorri,et al.  Planck evidence for a closed Universe and a possible crisis for cosmology , 2019, Nature Astronomy.

[29]  Ryan E. Keeley,et al.  Implications of a transition in the dark energy equation of state for the H0 and σ8 tensions , 2019, Journal of Cosmology and Astroparticle Physics.

[30]  N. Aghanim,et al.  On the Tension between Large Scale Structures and Cosmic Microwave Background , 2018, Proceedings of 2nd World Summit: Exploring the Dark Side of the Universe — PoS(EDSU2018).

[31]  Bharat Ratra,et al.  Constraints on dark energy dynamics and spatial curvature from Hubble parameter and baryon acoustic oscillation data , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[33]  M. Fishbach,et al.  A two per cent Hubble constant measurement from standard sirens within five years , 2017, Nature.

[34]  L. Waerbeke,et al.  The BAHAMAS project : the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation , 2017, 1712.02411.

[35]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[36]  Cornelius Rampf,et al.  Interacting neutrinos in cosmology: exact description and constraints , 2017, 1706.02123.

[37]  T. Reiprich,et al.  HICOSMO – cosmology with a complete sample of galaxy clusters – I. Data analysis, sample selection and luminosity–mass scaling relation , 2017, 1705.05842.

[38]  K. Abazajian Sterile neutrinos in cosmology , 2017, 1705.01837.

[39]  Zhen Pan,et al.  A tale of two modes: neutrino free-streaming in the early universe , 2017, 1704.06657.

[40]  Daniel Thomas,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy correlation function , 2016, 1610.03506.

[41]  C. A. Oxborrow,et al.  Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters , 2016, 1608.02487.

[42]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[43]  A. Melchiorri,et al.  Reconciling Planck with the local value of H0 in extended parameter space , 2016, 1606.00634.

[44]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT , 2016, The Astrophysical Journal Supplement Series.

[45]  A. Heavens,et al.  Beyond ΛCDM: Problems, solutions, and the road ahead , 2015, 1512.05356.

[46]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[47]  Cornelius Rampf,et al.  Boltzmann hierarchy for interacting neutrinos I: formalism , 2014, 1409.1577.

[48]  K. Ioka,et al.  IceCube PeV-EeV neutrinos and secret interactions of neutrinos , 2014, 1404.2279.

[49]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:signs of neutrino mass in current cosmological data sets , 2014, 1403.4599.

[50]  C. Moskowitz Cosmic mismatch hints at the existence of a 'sterile' neutrino , 2014, Nature.

[51]  M. Archidiacono,et al.  Updated constraints on non-standard neutrino interactions from Planck , 2013, 1311.3873.

[52]  T. Abel,et al.  Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation , 2013 .

[53]  F. Takahashi,et al.  Self-interacting Dark Radiation , 2013, 1305.6521.

[54]  R. Durrer,et al.  Cosmological Magnetic Fields: Their Generation, Evolution and Observation , 2013, 1303.7121.

[55]  C. A. Oxborrow,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[56]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[57]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[58]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[59]  E. Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1994, astro-ph/9401007.

[60]  V. Teplitz,et al.  Implications of relativistic gas dynamics for neutrino-neutrino cross sections , 1989 .

[61]  A. Manohar A limit on the neutrino-neutrino scattering cross section from the supernova☆ , 1987 .

[62]  J. Silk,et al.  Light neutrinos as cold dark matter , 1987 .

[63]  R. Plackett,et al.  Karl Pearson and the Chi-squared Test , 1983 .

[64]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.

[65]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[66]  W. Marsden I and J , 2012 .