Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.

[1]  Todd A. Brun,et al.  Quantum metrology for a general Hamiltonian parameter , 2014, 1407.6091.

[2]  Jonathan A. Jones,et al.  Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States , 2008, Science.

[3]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[4]  A. Rezakhani,et al.  Quantum metrology in open systems: dissipative Cramér-Rao bound. , 2013, Physical review letters.

[5]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[6]  Warwick P. Bowen,et al.  Quantum metrology and its application in biology , 2014, 1409.0950.

[7]  M. Lukin,et al.  Quantum error correction for metrology. , 2013, Physical review letters.

[8]  Jing Liu,et al.  Quantum multiparameter metrology with generalized entangled coherent state , 2014, 1409.6167.

[9]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[10]  C. Gross,et al.  Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates , 2012, 1203.5359.

[11]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[12]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[13]  Jing Liu,et al.  Maximal quantum Fisher information for general su(2) parametrization processes , 2015, 1503.05697.

[14]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[15]  R. Adhikari,et al.  Gravitational Radiation Detection with Laser Interferometry , 2013, 1305.5188.

[16]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[17]  H. Cramér Mathematical Methods of Statistics (PMS-9), Volume 9 , 1946 .

[18]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[19]  Animesh Datta,et al.  Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.

[20]  Hidetoshi Katori,et al.  Colloquium: Physics of optical lattice clocks , 2010, 1011.4622.

[21]  V. Negnevitsky,et al.  Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions , 2015, 1509.07083.

[22]  Michael J. W. Hall,et al.  Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory , 2012, 1205.2405.

[23]  M. Kolobov The spatial behavior of nonclassical light , 1999 .

[24]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[25]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[27]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[28]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[29]  Carlton M. Caves,et al.  Fundamental quantum limit to waveform estimation , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[30]  Sixia Yu,et al.  Robust quantum metrological schemes based on protection of quantum Fisher information , 2014, Nature Communications.

[31]  L. Pezzè,et al.  Entanglement and sensitivity in precision measurements with states of a fluctuating number of particles. , 2010, Physical review letters.

[32]  W. Wootters Statistical distance and Hilbert space , 1981 .

[33]  Mankei Tsang,et al.  Quantum metrology with open dynamical systems , 2013, 1301.5733.

[34]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[35]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[36]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[37]  Yixiao Huang,et al.  Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses , 2013 .

[38]  Analytically solvable two-level quantum systems and Landau-Zener interferometry , 2012, 1212.3334.

[39]  Mankei Tsang,et al.  Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.

[40]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[41]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[42]  J Wrachtrup,et al.  High-dynamic-range magnetometry with a single nuclear spin in diamond. , 2012, Nature nanotechnology.

[43]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[44]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[45]  P. Sekatski,et al.  Quantum metrology for the Ising Hamiltonian with transverse magnetic field , 2015, 1502.06459.

[46]  F. Khalili,et al.  Quantum Measurement Theory in Gravitational-Wave Detectors , 2012, Living Reviews in Relativity.

[47]  Samuel L Braunstein,et al.  Exponentially enhanced quantum metrology. , 2008, Physical review letters.

[48]  D. Alonso,et al.  Optimally robust shortcuts to population inversion in two-level quantum systems , 2012, 1206.1691.

[49]  Haidong Yuan Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation. , 2016, Physical review letters.

[50]  Lee A. Rozema,et al.  On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process , 2014, 1405.5444.

[51]  Y. Shih Quantum Imaging , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[52]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[53]  Alfredo Luis,et al.  Nonlinear transformations and the Heisenberg limit , 2004 .

[54]  Kaushik P. Seshadreesan,et al.  Quantum Optical Technologies for Metrology, Sensing, and Imaging , 2014, Journal of Lightwave Technology.

[55]  Morgan W. Mitchell,et al.  Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2012 .

[56]  Jing Liu,et al.  Quantum metrology with unitary parametrization processes , 2014, Scientific Reports.

[57]  Haidong Yuan,et al.  Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation. , 2015, Physical review letters.

[58]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[59]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[60]  Jian Ma,et al.  Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model , 2009, 0905.0245.

[61]  K J Resch,et al.  Time-reversal and super-resolving phase measurements. , 2007, Physical review letters.

[62]  Yaron Silberberg,et al.  Supersensitive polarization microscopy using NOON states of light. , 2014, Physical review letters.

[63]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[64]  R. Ozeri,et al.  Nonlinear single-spin spectrum analyzer. , 2013, Physical review letters.

[65]  H. Haus,et al.  QUANTUM NOISE IN LINEAR AMPLIFIERS , 1962 .

[66]  Inverse problem for the Landau-Zener effect , 2002, cond-mat/0202314.

[67]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.