Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
暂无分享,去创建一个
[1] Todd A. Brun,et al. Quantum metrology for a general Hamiltonian parameter , 2014, 1407.6091.
[2] Jonathan A. Jones,et al. Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States , 2008, Science.
[3] Kerry Vahala,et al. Cavity opto-mechanics. , 2007, Optics express.
[4] A. Rezakhani,et al. Quantum metrology in open systems: dissipative Cramér-Rao bound. , 2013, Physical review letters.
[5] Animesh Datta,et al. Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.
[6] Warwick P. Bowen,et al. Quantum metrology and its application in biology , 2014, 1409.0950.
[7] M. Lukin,et al. Quantum error correction for metrology. , 2013, Physical review letters.
[8] Jing Liu,et al. Quantum multiparameter metrology with generalized entangled coherent state , 2014, 1409.6167.
[9] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[10] C. Gross,et al. Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates , 2012, 1203.5359.
[11] M. Berry,et al. Transitionless quantum driving , 2009 .
[12] F. Verstraete,et al. Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.
[13] Jing Liu,et al. Maximal quantum Fisher information for general su(2) parametrization processes , 2015, 1503.05697.
[14] D. Bures. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .
[15] R. Adhikari,et al. Gravitational Radiation Detection with Laser Interferometry , 2013, 1305.5188.
[16] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[17] H. Cramér. Mathematical Methods of Statistics (PMS-9), Volume 9 , 1946 .
[18] N. Mavalvala,et al. Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.
[19] Animesh Datta,et al. Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.
[20] Hidetoshi Katori,et al. Colloquium: Physics of optical lattice clocks , 2010, 1011.4622.
[21] V. Negnevitsky,et al. Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions , 2015, 1509.07083.
[22] Michael J. W. Hall,et al. Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory , 2012, 1205.2405.
[23] M. Kolobov. The spatial behavior of nonclassical light , 1999 .
[24] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[25] Rory A. Fisher,et al. Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[26] H. Yuen. Quantum detection and estimation theory , 1978, Proceedings of the IEEE.
[27] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[28] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[29] Carlton M. Caves,et al. Fundamental quantum limit to waveform estimation , 2010, CLEO: 2011 - Laser Science to Photonic Applications.
[30] Sixia Yu,et al. Robust quantum metrological schemes based on protection of quantum Fisher information , 2014, Nature Communications.
[31] L. Pezzè,et al. Entanglement and sensitivity in precision measurements with states of a fluctuating number of particles. , 2010, Physical review letters.
[32] W. Wootters. Statistical distance and Hilbert space , 1981 .
[33] Mankei Tsang,et al. Quantum metrology with open dynamical systems , 2013, 1301.5733.
[34] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[35] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[36] Keiji Sasaki,et al. Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.
[37] Yixiao Huang,et al. Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses , 2013 .
[38] Analytically solvable two-level quantum systems and Landau-Zener interferometry , 2012, 1212.3334.
[39] Mankei Tsang,et al. Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.
[40] L. Pezzè,et al. Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.
[41] Sergio Boixo,et al. Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.
[42] J Wrachtrup,et al. High-dynamic-range magnetometry with a single nuclear spin in diamond. , 2012, Nature nanotechnology.
[43] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[44] B. Kraus,et al. Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.
[45] P. Sekatski,et al. Quantum metrology for the Ising Hamiltonian with transverse magnetic field , 2015, 1502.06459.
[46] F. Khalili,et al. Quantum Measurement Theory in Gravitational-Wave Detectors , 2012, Living Reviews in Relativity.
[47] Samuel L Braunstein,et al. Exponentially enhanced quantum metrology. , 2008, Physical review letters.
[48] D. Alonso,et al. Optimally robust shortcuts to population inversion in two-level quantum systems , 2012, 1206.1691.
[49] Haidong Yuan. Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation. , 2016, Physical review letters.
[50] Lee A. Rozema,et al. On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process , 2014, 1405.5444.
[51] Y. Shih. Quantum Imaging , 2007, IEEE Journal of Selected Topics in Quantum Electronics.
[52] Moore,et al. Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[53] Alfredo Luis,et al. Nonlinear transformations and the Heisenberg limit , 2004 .
[54] Kaushik P. Seshadreesan,et al. Quantum Optical Technologies for Metrology, Sensing, and Imaging , 2014, Journal of Lightwave Technology.
[55] Morgan W. Mitchell,et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2012 .
[56] Jing Liu,et al. Quantum metrology with unitary parametrization processes , 2014, Scientific Reports.
[57] Haidong Yuan,et al. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation. , 2015, Physical review letters.
[58] A Retzker,et al. Increasing sensing resolution with error correction. , 2013, Physical review letters.
[59] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[60] Jian Ma,et al. Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model , 2009, 0905.0245.
[61] K J Resch,et al. Time-reversal and super-resolving phase measurements. , 2007, Physical review letters.
[62] Yaron Silberberg,et al. Supersensitive polarization microscopy using NOON states of light. , 2014, Physical review letters.
[63] Jonathan P. Dowling,et al. A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.
[64] R. Ozeri,et al. Nonlinear single-spin spectrum analyzer. , 2013, Physical review letters.
[65] H. Haus,et al. QUANTUM NOISE IN LINEAR AMPLIFIERS , 1962 .
[66] Inverse problem for the Landau-Zener effect , 2002, cond-mat/0202314.
[67] Alex W Chin,et al. Quantum metrology in non-Markovian environments. , 2011, Physical review letters.